CLXXXIII.-The Dilution and Neutral-salt Errors of Buffer Mixtures.

By Charles Morton.

Owing to the wide distribution of neutral salts in tissues and bodyfluids, the well-known fact that the apparent hydrogen-ion concentration of buffer mixtures is increased on the addition of neutral salts is of especial importance in biochemical investigations. In the case of polybasic buffers, such as the phosphate mixtures, neglect of neutral-salt effects may lead to appreciable error. The problem has been examined, so far as the phosphate mixtures are concerned, by Michaelis and Krüger (Biochem. Z., 1921, 119, 307), and by Cohn (J. Amer. Chem. Soc., 1927, 49, 173), but no systematic investigation of the dilution and salt errors of buffer mixtures in general appears to have been undertaken.

The properties of the following mixtures have now been studied : (1) Half-neutralised solutions of acetic and cacodylic acids; (2) one-fourth-neutralised solutions of aspartic acid and of arginine:
(3) three-fourths-neutralised solutions of o-phthalic and α-monoglycerylphosphoric acids; (4) mixtures of sodium pyrophosphate and hydrochloric acid in the molecular proportions (a) $2: 3,(b) 2: 1$. For such mixtures we have, respectively, (1) $p_{\mathrm{H}}=p_{\mathrm{K}}$, (2) $p_{\mathrm{H}}=p_{R_{\mathrm{L}}}$, (3) $p_{\mathrm{H}}=p_{K_{2}}$, (4a) $p_{\mathrm{H}}=p_{K_{3}}$. (4b) $p_{\mathrm{H}}=p_{K_{6}}$, where $K=10^{-p_{K}}$ is the apparent dissociation constant of the buffer electrolyte. To these solutions various amounts of N-potassium chloride, N-sodium 3 A
chloride, $M / 3$-potassium sulphate, $M / 3$-barium chloride, and $M / 4$ magnesium sulphate were added, and the p_{H} (or p_{K}) change produced by each addition was noted. The effect of dilution was also studied.

The experimental results are in Tables I-IX. In all cases p_{K} decreases on the addition of neutral salts, but increases on dilution. Both effects become more strongly marked as the valency of the buffer acid increases. When the concentration of added salt is small, the $p_{\text {H }}$ change is independent of the specific nature of the salt, depending only on the valency type; with larger additions a specific salt action is exhibited. As regards the importance of their effects in inducing p_{H} change in acid buffer mixtures, the influence of neutral salts is in the order $\mathrm{BaCl}_{2}>\mathrm{MgSO}_{4}>\mathrm{NaCl}>$ $\mathrm{KCl}>\mathrm{K}_{2} \mathrm{SO}_{4}$, whatever the nature of the buffer acid. For basic buffers the order is reversed : $\mathrm{K}_{2} \mathrm{SO}_{4}>\mathrm{KCl}>\mathrm{NaCl}$.

In dilute solution, when free acid and salt were present in equivalent concentration, the p_{K} or $p_{\text {H }}$ changes brought about by further dilution, or by the addition of small quantities of neutral salts, were satisfactorily described by the equation

$$
\begin{equation*}
p_{k}=p_{\text {H }}+A \sqrt{ } \mu=p_{K}+A \sqrt{\bar{\mu}} . \tag{l}
\end{equation*}
$$

where μ is the ionic strength as defined by Lewis and Randall (J. Amer. Chem. Soc., 1921, 43, 1112), and p_{k} and A are true constants. When acid and salt are not present in equivalent concentration, the equation

$$
\begin{equation*}
p_{k}=p_{\mathbf{H}}+\log [\text { acid }] /[\text { salt }]+A \sqrt{ } \mu . \tag{2}
\end{equation*}
$$

applies within the limits of validity of Henderson's equation (i.e., within the p_{B} limits 4-10). The numerical value of A is 0.5 for monobasic acids, of the order of 1.5 for dibasic acids, 2.5 for tribasic acids, and, in general, roughly equal to ($n-0.5$) for an n-valent acid.

In solutions of higher ionic strength, the hydrogen-ion relationships are defined by the expression

$$
\begin{align*}
& p_{k}=p_{K}+A \sqrt{\mu}-B \mu \tag{3}\\
& p_{k}=p_{\mathbf{H}}+\log [\text { acid }] /[\text { salt }]+A \sqrt{\mu}-B_{\mu} \tag{4}
\end{align*}
$$

or
The constants A and p_{k} have the same significance and numerical values as before, and B is a coefficient expressing the specific action of the ions. Let the values of p_{K} in three buffer solutions containing identical ions, but of different ionic strengths $\mu^{\prime}, \mu^{\prime \prime}, \mu^{\prime \prime \prime}$, be $p_{K^{\prime}}$, $p_{K^{\prime \prime}}$, and $p_{K^{\prime \prime \prime}}$, respectively. Then $p_{k}=p_{K^{\prime}}+A \sqrt{\mu^{\prime}}-B \mu^{\prime}=$ $p_{K^{\prime \prime}}+A \sqrt{\mu^{\prime \prime}}-B \mu^{\prime \prime}=p_{R^{\prime \prime \prime}}+A \sqrt{\mu^{\prime \prime \prime}}-B \mu^{\prime \prime \prime}$
whence

$$
\begin{equation*}
A=\frac{a c_{1}-a_{1} c}{b c_{1}-b_{1} c} \text { and } B=\frac{a b_{1}-a_{1} b}{b c_{1}-b_{1} c} \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
a=p_{R^{\prime \prime}}-p_{R^{\prime}}, b=\sqrt{\mu^{\prime}}-\sqrt{\mu^{\prime \prime}}, c=\mu^{\prime}-\mu^{\prime \prime} \\
a_{1}=p_{K^{\prime \prime \prime}}-p_{K^{\prime}}, b_{1}=\sqrt{\mu^{\prime}}-\sqrt{\mu^{\prime \prime \prime}}, c_{1}=\mu^{\prime}-\mu^{\prime \prime \prime}
\end{gathered}
$$

By means of (5) the values of A and B may be obtained independently of one another, and by substitution in equation (3) p_{k} is obtained.

By the use of this method, the values of A, B, and p_{k} given in Tables II-IX were obtained. The constancy of k throughout ranges of dilution and salt concentration varying from $N / 2$ to $N / 1000$ is in general good, and appears to justify the use of the above method of formulation. The mean values of p_{k} and the salt coefficient B for the salts and mixtures studied were as follows (C is the molar concentration of the free acid and of the salt) :

Buffer electrolyte.		C.		Values of B for				
			p_{k}.	$\mathrm{K}_{2} \mathrm{SO}_{4}$.	KCl .	NaCl .	MgS	
	K	0.02	$3 \cdot 895$	$0 \cdot 485$	$0 \cdot 402$	$0 \cdot 252$	$0 \cdot 209$	0.057
Acetic acid	K	0.01	4.735	0.411	0.348	0.295	$0 \cdot 160$	$0 \cdot 148$
Cacodylic acid	K	0.04	6.247	0.352		0.259	$0 \cdot 119$	$0 \cdot 153$
Phthalic acid..	K_{2}	0.01	5.333	0.961	0.845	0.759	0.466	0.435
a-Glycerylphosphoric acid	K_{2}	0.01	6.744	0.965	0.837	0.629	$0 \cdot 288$	0.256
Pyrophosphoric acid...	K_{3}	0.02	6.704	1.48	1.29	0.983		
Pyrophosphoric acid...	K_{4}	0.02	9.880	1.74	1.33	0.687		
Arginine		0.005	5•178	0.371	$0 \cdot 408$	$0 \cdot 466$		

It is clear that the value of B depends on the specific nature of the salt, and to a less extent on the strength and valency of the buffer acid, decreasing slightly with decreasing strength of the acid and increasing with the valency of the acid.

The Quantitative Expression of Buffer Capacity.

Van Slyke (J. Biol. Chem., 1922, 52, 525) has suggested as a unit of buffer capacity the differential ratio $\beta=d B / d p_{\mathrm{H}}$, expressing the relationship between the increment $d B$ of strong base and the resulting p_{H} change. The practical value of a buffer solution depends on the degree of resistance offered to changes in hydrogen-ion concentration occasioned (l) by the presence of acid or basic impurities, (2) by errors of dilution, or by the presence of foreign salts. If trustworthy conclusions as to the reproducibility of a given solution are to be drawn, the magnitude of the errors due to both sources must be known. This point may be illustrated by a comparison of the effects of strong bases and of dilution on the hydrogen-ion concentration of (a) $0 \cdot 1 N$-sulphuric acid, (b) $0 \cdot 1 N$-glycine, (c) $0 \cdot 1 N$ standard acetate.

The dilution error (provisionally formulated as $\pi^{\prime}=\Delta p_{\mathrm{H}} / \Delta C$) involved in the preparation of $0 \cdot 1 N$-sulphuric acid is 14 times as great as that of standard acetate; this accounts for the experimental observation that, whereas the former solution has the higher β value, the latter is the more readily reproduced. On the other hand, although $0 \cdot 1 N$-glycine and $0 \cdot 1 N$-standard acetate have approximately the same dilution errors, the alkali-resisting capacity of standard acetate is 60 times as great as that of the glycine. Of the three solutions, only standard acetate fulfils the requirements of an ideal buffer solution, combining a high β value with a low π^{\prime} or dilution error.

It appears desirable to supplement the β value of van Slyke by a second unit which will serve as a criterion of the probable dilution or salt error. It has been shown above that in the case of typical buffer mixtures, i.e., mixtures prepared from acids or bases the dissociation constants of which lie between the limits 10^{-4} and 10^{-10}, the dilution and salt errors are functions of the ionic strength rather than of concentration. The proposed unit will be defined, therefore, as the differential ratio $\pi=d p_{\mathrm{H}} / d \sqrt{\mu}$. When both the β and π values of a solution are stated, the buffer efficiency is completely defined : the higher the β value, and the lower the π value, the greater the efficiency.
For a typical buffer mixture within the range of validity of Henderson's equation, we have, from (4),

$$
\begin{equation*}
\pi=d p_{\mathrm{Z}} / d \sqrt{\bar{\mu}}=2 B \sqrt{\mu}-A . \tag{6}
\end{equation*}
$$

since the values of p_{k} and the ratio of acid to salt are inappreciably affected by dilution or by the addition of neutral salts.

In solutions of low ionic strength ($\mu<0.01$), e.g., in dilute buffer solutions, (6) reduces to

$$
\begin{equation*}
\pi=-A=0.5-n . \tag{7}
\end{equation*}
$$

From equations (6) and (7) it can be deduced that:
(1) The dilution error, unlike the β value, is independent of the strength of the buffer electrolyte.
(2) The limiting dilution error is the same for all mixtures of the same salt and acid, e.g., all the phosphate mixtures of Clark and Lubs have the same limiting dilution error.
(3) All buffer mixtures prepared from monobasic acids or monoacid bases have the same limiting dilution error, viz., -0.5 .
(4) The limiting dilution error rapidly increases with the valency of the buffer acid or base. For dibasic acids, e.g., the phthalate and phosphate mixtures, the error is 3 times as great as for monobasic acid mixtures. Hence, ceteris paribus, monobasic buffer mixtures are preferable to polybasic mixtures.

Table I.

Buffer electrolyte. Aspartic acid \dagger	$\begin{gathered} A \\ 0.5 \end{gathered}$	C.	$\sqrt{\mu}{ }^{*}{ }^{*}$	E.M.F.	$p_{\text {F }}$.	K.	k.
		0.02	$0 \cdot 142$	$0 \cdot 4721$	$3 \cdot 832$	1.5×10^{-4}	1.27×10^{-4}
		0.01	$0 \cdot 101$	$0 \cdot 4748$	$3 \cdot 878$	$1 \cdot 4$	$1 \cdot 21$
		0.005	0.072	$0 \cdot 4757$	$3 \cdot 892$	$1 \cdot 3$	$1 \cdot 24$
		0.0025	0.051	$0 \cdot 4782$	$3 \cdot 933$	$1 \cdot 3$	$1 \cdot 26$
		0.00125	0.037	$0 \cdot 4793$	$3 \cdot 952$	$1 \cdot 3$	1.28
Cacodylic acid $\ldots . . .$. K	$0 \cdot 5$	$0 \cdot 04$	$0 \cdot 200$	0.6116	$6 \cdot 153$	7.0×10^{-7}	5.6×10^{-7}
		$0 \cdot 02$	$0 \cdot 141$	0.6123	$6 \cdot 165$	$6 \cdot 8$	$5 \cdot 8$
		$0 \cdot 01$	$0 \cdot 100$	0.6135	6-184	$6 \cdot 5$	$5 \cdot 8$
		0.005	0.0707	$0 \cdot 6144$	$6 \cdot 198$	$6 \cdot 3$	$5 \cdot 8$
		$0 \cdot 0025$	0.050	$0 \cdot 6145$	$6 \cdot 200$	$6 \cdot 3$	$5 \cdot 9$
		$0 \cdot 00125$	0.035	$0 \cdot 6150$	$6 \cdot 209$	$6 \cdot 2$	$5 \cdot 9$
Phthalic acid K_{2}	$1 \cdot 5$	0.010	$0 \cdot 200$	$0 \cdot 5476$	$5 \cdot 055$	8.8×10^{-6}	4.4×10^{-6}
		0.005	$0 \cdot 141$	0.5502	$5 \cdot 098$	$8 \cdot 0$	$4 \cdot 9$
		0.0025	$0 \cdot 100$	$0 \cdot 5535$	$5 \cdot 153$	$7 \cdot 0$	$5 \cdot 0$
		$0 \cdot 00125$	0.071	0.5543	$5 \cdot 166$	$6 \cdot 8$	$5 \cdot 3$
		$0 \cdot 000625$	0.050	$0 \cdot 5584$	$5 \cdot 235$	$5 \cdot 8$	4.9
Glycerylphosphoric acid $\boldsymbol{K}_{\mathbf{2}}$	$1 \cdot 5$	$0 \cdot 01$	$0 \cdot 200$	0.6296	6.452	3.5×10^{-7}	1.8×10^{7}
		0.005	$0 \cdot 141$	$0 \cdot 6330$	$6 \cdot 509$	$3 \cdot 1$	1.9
		$0 \cdot 0025$	$0 \cdot 100$	0.6348	6.539	$3 \cdot 9$	$\bigcirc \cdot 0$
		$0 \cdot 00125$	0.0707	$0 \cdot 6385$	$6 \cdot 601$	2.5	$2 \cdot 0$
Pyrophosphoric acid (i) \boldsymbol{K}_{3}	$2 \cdot 5$	$0 \cdot 02$	$0 \cdot 490$	$0 \cdot 5922$	$5 \cdot 797$	16.0×10^{-7}	0.95×10^{7}
		0.01	$0 \cdot 346$	$0 \cdot 6012$	$5 \cdot 947$	11.3	1.5
		0.005	$0 \cdot 245$	0.6066	6.037	$9 \cdot 2$	$2 \cdot 2$
		0.0025	$0 \cdot 173$	0.6148	$6 \cdot 173$	$6 \cdot 7$	$2 \cdot 5$
		0.00125	$0 \cdot 123$	0.6198	6.256	$5 \cdot 5$	$\underline{-7}$
Pyrophosphoric acid (ii) K_{4}	$3 \cdot 5$	$0 \cdot 02$	0.583	$0 \cdot 7410$	$8 \cdot 307$	49×10^{-10}	0.45×10^{-16}
		0.01	$0 \cdot 412$	0.7520	$8 \cdot 489$	32	$1 \cdot 2$
		0.005	$0 \cdot 292$	$0 \cdot 7626$	$8 \cdot 664$	22	$2 \cdot 1$
		$0 \cdot 0025$	$0 \cdot 206$	$0 \cdot 7673$	$8 \cdot 744$	18	$3 \cdot 4$
		$0 \cdot 00125$	$0 \cdot 146$	$0 \cdot 7723$	$8 \cdot 826$	15	$4 \cdot 6$

* From the definition of I.ewis and Randall, it follows that the ionic strengths of solutions of uni-bivalent, uni-tervalent, and uni-quadrivalent electrolytes are respectively equal to three, six, and ten times the molar concentrations, and that of a uni-univalent electrolyte is equal to the normality. The ionic strengths of the various mixtures were therefore derived as follows:

Arginine and aspartic, acetic, and cacodylic acid mixtures : $\mu=$ [salt $]=C$.
Phthalic and glycerylphosphoric mixtures: $\mu=\left[\mathrm{HA}^{\prime}\right]+3\left[\mathrm{~A}^{\prime \prime}\right]=4 \mathrm{C}$, where $C=\left[\mathrm{HA}^{\prime}\right]=$ [$\left.A^{\prime \prime}\right]$.

Pyrophosphoric mixture (i): $\mu=6\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{\prime \prime \prime}\right]+3\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{\prime \prime}\right]+\left[\mathrm{Cl}^{\prime}\right]=12 \mathrm{C}$, where $C=$ $\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{\prime \prime}\right]=\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{\prime \prime}\right]=\frac{1}{3}\left[\mathrm{Cl}^{\prime}\right]$.
Pyrophosphoric mixture (ii) : $\mu=10\left[\mathrm{P}_{2} \mathrm{O}_{7}{ }^{\prime \prime \prime \prime}\right]+6\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{\prime \prime \prime}\right]+[\mathrm{Cl}]=17 \mathrm{C}$, where $C=$ $\left[\mathrm{P}_{2} \mathrm{O}_{7}{ }^{\prime \prime \prime \prime}\right]=\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{\prime \prime \prime}\right]=\left[\mathrm{Cl}^{\prime}\right]$.
\dagger In computing K_{1}, the expression $p_{K_{1}}=p_{\mathrm{H}}+\frac{1}{+} \log$ ([salt] - [H•]), ([salt] $\left.+\left[\mathrm{H}^{\cdot}\right]\right)$ ras used. the Henderson equation being inexact when [$\left.\mathrm{H}^{+}\right]>10^{-4}$.
(5) When $\sqrt{\mu}<A / 2 B, d p_{\mathrm{H}} / d \sqrt{\mu}$ has a negative value, the p_{H} value of the solution decreasing with increasing ionic strength. When $\sqrt{\bar{\mu}}=A / 2 B, d p_{\mathbf{u}} / d \sqrt{\mu}=0$, and, from (4), the corresponding value of the hydrogen-ion concentration, the lowest which can be obtained with a given buffer mixture, is given by $p_{\mathrm{H}}=p_{k}-$ \log [acid]/[salt] $-A^{2} / 4 B$. When $\sqrt{\mu}>A / 2 B$, the p_{H} value of the mixture increases with increasing ionic strength.
(6) The $\pi-\sqrt{\mu}$ graph is a straight line, the slope of which is equal to $2 B$.

The Thermodynamical Significance of the Dilution and Salt Errors.
Henderson's equation is derived on the assumptions that (1) the concentrations of hydrogen and hydroxyl ions are negligibly small compared with those of the total acid and base; (2) the salt is completely dissociated; (3) the law of mass action, as ordinarily defined in concentration terms, is obeyed. Between the $p_{\text {日 }}$ limits

Table II.
Aspartic acid mixture.

$\left[\mathrm{H}_{3} \mathrm{~A}\right]=\left[\mathrm{HA}^{\prime}\right]=0.02$.										
$\begin{gathered} \text { Salt. } \\ N-\mathrm{KCl} \end{gathered}$	$\underset{0 \cdot 497}{A .}$	$\begin{gathered} B . \\ 0 \cdot 402 \end{gathered}$	$\underset{\mu}{\text { C.c. added }}$	$\begin{aligned} & 0.0 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.0485 \end{aligned}$	0.5 0.0667	$\begin{aligned} & 1 \cdot 0 \\ & 0 \cdot 1091 \end{aligned}$	$\begin{aligned} & 1 \cdot 5 \\ & 0.1478 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.1834 \end{aligned}$	$\begin{aligned} & 3 \cdot 0 \\ & 0 \cdot 2462 \end{aligned}$
			E.M.F.	0.4721	$0 \cdot 4712$	$0 \cdot 4707$	$0 \cdot 4698$	$0 \cdot 4690$	$0 \cdot 4686$	$0 \cdot 4680$
				3.832	$3 \cdot 818$	$3 \cdot 809$	$3 \cdot 794$	3.781	3.774	3.764
			${ }_{K} \times 10^{4}$	$1 \cdot 47$	1.52	1-55	1.61	$1 \cdot 66$	1.68	1.72
			$k \times 10^{4}$	$1 \cdot 28$	$1 \cdot 24$	$1 \cdot 22$	$1 \cdot 22$	$1 \cdot 22$	$1 \cdot 22$	1.22
$N-\mathrm{NaCl}$	$0 \cdot 495$	0.252	E.M.F.	$0 \cdot 4721$	$0 \cdot 4701$	$0 \cdot 4699$	0.4685	$0 \cdot 4675$	$0 \cdot 4667$	0.4656
				3.832	3.799	3.796	3.772	3.756	3.743	$3 \cdot 724$
			$K \times 10^{4}$	1.47	1.59	$1 \cdot 60$	$1 \cdot 69$	1.75	1.81	1.89
			$k \times 10^{4}$	1.27	$1 \cdot 27$	$1 \cdot 24$	1.24	$1 \cdot 23$	$1 \cdot 23$	1.24
$\mathrm{M} / 3-\mathrm{K}_{2} \mathrm{SO}_{4}$	$0 \cdot 499$	0.485	E.M.F.	$0 \cdot 4721$	$0 \cdot 4718$	$0 \cdot 4715$	$0 \cdot 4712$	$0 \cdot 4710$	$0 \cdot 4705$	0.4704
				3.832	$3 \cdot 827$	$3 \cdot 822$	$3 \cdot 818$	3.815	$3 \cdot 806$	3.805
			$K \times 10^{4}$	$1 \cdot 47$	$1 \cdot 49$	1.51	1.52	1.53	1.56	1.57
			k $\times 10^{4}$	1.28	$1 \cdot 22$	$1 \cdot 21$	1.18	$1 \cdot 16$	1.17	1.16
$M / 3-\mathrm{BaCl}_{2}$	0.498	0.057	E.M.F.	$0 \cdot 4721$	$0 \cdot 4695$	$0 \cdot 4685$	0.4661	$0 \cdot 4646$	0.4634	$0 \cdot 4614$
				$3 \cdot 832$	3.788	$3 \cdot 772$	3.733	$3 \cdot 708$	3.688	3.655
			$K \times 10^{4}$	$1 \cdot 47$	1.63	$1 \cdot 69$	1.85	$1 \cdot 96$	$2 \cdot 05$	2.21
			$k \times 10^{4}$	$1 \cdot 26$	1.27	1.37	1.28	1.28	1.29	$1 \cdot 29$
$\underline{M / 4-\mathrm{MgSO}_{4}}$	0.500	$0 \cdot 209$	E.M.F.	$0 \cdot 4721$	0.4710	$0 \cdot 4700$	0.4682	$0 \cdot 4670$	0.4663	$0 \cdot 4652$
				$3 \cdot 832$	3.815	3.797	$3 \cdot 768$	$3 \cdot 748$	3.736	3.718
			$K \times 10^{4}$	$1 \cdot 47$	1.53	$1 \cdot 60$	1.71	$1 \cdot 79$	$1 \cdot 84$	$1 \cdot 91$
			$k \times 10^{4}$	$1 \cdot 26$	$1 \cdot 22$	1.22	1.23	1.23	1.23	1.22
			C.c. added	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 0$	7.0	8.0	$9 \cdot 0$	$10 \cdot 0$
			μ	$0 \cdot 3000$	0.3467	0.3875	$0 \cdot 4235$	$0 \cdot 4556$	0.4842	0.5100
$N-\mathrm{KCl}$	0.497	$0 \cdot 402$	E.M.F.	$0 \cdot 4678$	$0 \cdot 4677$	0.4675	$0 \cdot 4674$	$0 \cdot 4674$	0.4673	$0 \cdot 4672$
			$p_{\text {f }}$	3.761	3.759	3.756	$3 \cdot 75 \overline{5}$	3.755	$3 \cdot 753$	3.752
			$K \times 10^{4}$	1.73	1.74	1.75	1.76	1.76	$1 \cdot 77$	1.77
			$\underline{k} \times 10^{4}$	1.22	1.22	1.23	1.23	$1 \cdot 23$	$1 \cdot 25$	$1 \cdot 25$
N NaCl	0.495	0.252	E.M.F.	$0 \cdot 4647$	$0 \cdot 4642$	$0 \cdot 4639$	0.4636	$0 \cdot 4633$	$0 \cdot 4630$	$0 \cdot 4627$
				3.710	3.701	3.697	3.691	3.686	3.681	$3 \cdot 676$
			$K \times 10^{4}$	1.95	$1 \cdot 99$	$2 \cdot 01$	$2 \cdot 04$	$2 \cdot 06$	2.08	$2 \cdot 11$
			$k \times 10^{4}$	$1 \cdot 24$	1.24	1.24	1.24	$1 \cdot 24$	$1 \cdot 25$	$1 \cdot 26$
$M / 3 \mathrm{~K}_{2} \mathrm{SO}_{4}$	$0 \cdot 499$	$0 \cdot 485$	E.M.F.	$0 \cdot 4704$	0.4703	$0 \cdot 4703$	$0 \cdot 4704$	$0 \cdot 4703$	$0 \cdot 4702$	0.4701
			$p_{\text {H }}$	3.805	$3 \cdot 803$	$3 \cdot 803$	3.805	$3 \cdot 803$	3.801	3.799
			$K \times 10^{4}$	$1 \cdot 57$	1.57	$1 \cdot 57$	1.57	1.57	1.58	$1 \cdot 59$
			k $\times 1{ }^{4}$	$1 \cdot 16$	1.18	1.19	1.19	1.21	1.22	$1 \cdot 23$
$M / 3-\mathrm{BaCl}_{2}$	0.498	0.057	E.M.F.	$0 \cdot 4603$	0.4592	0.4585	0.4577	0.4568	0.4567	0.4563
			$p_{\text {E }} \times 1{ }^{4}$	3.637	$3 \cdot 618$	$3 \cdot 607$	3.593	3.578	3.576	3.570
			$K \times 10^{4}$	$2 \cdot 31$	$2 \cdot 41$	$2 \cdot 47$	2.55	$2 \cdot 64$	$2 \cdot 66$	$2 \cdot 69$
			$k \times 10^{4}$	$1 \cdot 28$	$1 \cdot 28$	$1 \cdot 27$	1.28	$1 \cdot 29$	$1 \cdot 27$	$1 \cdot 27$
M/4- $\mathrm{MgSO} \mathrm{S}_{4}$	0.500	0.209	E.M.F.		$0 \cdot 4639$	$0 \cdot 4632$	$0 \cdot 4626$	$0 \cdot 4623$	0.4618	$0 \cdot 4617$
			$p_{\text {R }}$		$3 \cdot 697$	3.684	3.674	3.669	3.661	3.659
			$K \times 10^{4}$		$2 \cdot 01$	$2 \cdot 07$	$2 \cdot 12$	$2 \cdot 14$	$2 \cdot 18$	$2 \cdot 19$
			$k \times 10^{4}$		$1 \cdot 21$	1.22	1.23	$1 \cdot 23$	1.24	$1 \cdot 23$

4-10 the first assumption is obviously justified at ordinary concentrations. If the second and third assumptions were both valid, therefore, dilution and neutral salt errors would be non-existent. The fact that both errors are functions of the ionic strength rather than of concentration suggests that it is the third assumption which is at fault, and that the activity concept may offer a solution. The introduction of the activity correction into the Henderson equation leads to the expression

$$
\begin{equation*}
p_{k}=p_{\text {H }}+\log [\text { acid }] /[\text { salt }]+\log f_{a} / f_{s} \tag{8}
\end{equation*}
$$

in which f_{a} and f_{s} are the activity coefficients of the undissociated acid and of the salt anions, or of the acid anions of lower and higher valency, respectively, and $k=10^{-p_{k}}$ is a true constant, the thermodynamic dissociation constant. Brensted (Trans. Faraday Soc.,

1927, 23, 418) puts the Debye-Hückel (Physikal. Z., 1923, 24, 185) equation for the activity coefficient f of an ion of valency z in the form $-\log f=0.5 z^{2} \sqrt{\mu}+b \mu$. For the n-th stage in the dissociation of a weak acid this gives $-\log f_{a}=0.5(n-1)^{2} \sqrt{\bar{\mu}}+$ $b^{\prime} \mu$ and $-\log f_{s}=0.5 n^{2} \sqrt{\mu}+b^{\prime \prime} \mu$, or $\log f_{a} / f_{s}=(n-0.5) \sqrt{\mu}-$ $B \mu$, where $B=b^{\prime}-b^{\prime \prime}$.

Equations (8) and (4), therefore, are identical and the data of Tables I-IX constitute an experimental verification of the DebyeHückel theory.

For mono- and di-basic acids, the numerical values of the proportionality constant A are in excellent agreement with those derived thermodynamically from the Debye-Hückel theory, viz., 0.5 and 1.5 , respectively, but for acids of higher valency there is

Table IV.
Cacodylic acid mixture.

$[\mathrm{HA}]=\left[\mathrm{A}^{\prime}\right]=0.04$.										
$\begin{array}{r} \text { Salt. } \\ -\mathrm{NaCl} \end{array}$			C.c. added	$0 \cdot 0$	$0 \cdot 3$	$0 \cdot \overline{5}$	$1 \cdot 0$	1.5	$2 \cdot 0$	$3 \cdot 0$
	$\begin{aligned} & A . \\ & 0.5 \end{aligned}$	$\begin{aligned} & B . \\ & 0.259 \end{aligned}$	μ	0.0400	0.068	0.0857	$0 \cdot 1273$	$0 \cdot 1652$	$0 \cdot 200$	$0 \cdot 2616$
			E.M.F.	$0 \cdot 6116$	$0 \cdot 6100$	$0 \cdot 6095$	$0 \cdot 6089$	$0 \cdot 6080$	$0 \cdot 6073$	$0 \cdot 6065$
			$p_{\text {H }}$	$6 \cdot 153$	$6 \cdot 127$	$6 \cdot 119$	$6 \cdot 108$	$6 \cdot 094$	$6 \cdot 081$	$6 \cdot 068$
			$K \times 10^{7}$	$7 \cdot 0$	$7 \cdot 5$	$7 \cdot 6$	$7 \cdot 8$	$8 \cdot 1$	$8 \cdot 3$	$8 \cdot 6$
			$k \times 10^{7}$	$5 \cdot 7$	$5 \cdot 7$	$5 \cdot 7$	$5 \cdot 6$	$5 \cdot 6$	$5 \cdot 6$	$5 \cdot 6$
$M_{i} 3-\mathrm{K}_{2} \mathrm{SO}_{4}$	$0 \cdot 5$	0.352	E.M.F.	$0 \cdot 6116$	$0 \cdot 6103$	0.6100	$0 \cdot 6094$	$0 \cdot 6092$	$0 \cdot 6083$	$0 \cdot 6079$
			$p_{\text {A }}$	$6 \cdot 153$	$6 \cdot 131$	$6 \cdot 127$	$6 \cdot 116$	$6 \cdot 113$	$6 \cdot 088$	6.091
			$K \times 10^{7}$	$7 \cdot 0$	$7 \cdot 4$	$7 \cdot 5$	7.7	$7 \cdot 7$	$8 \cdot 0$	$8 \cdot 1$
			$k \times 10^{7}$	$5 \cdot 8$	$5 \cdot 8$	$5 \cdot 7$	$5 \cdot 6$	$\overline{5} 5$	$5 \cdot 6$	$5 \cdot 6$
$M / 3-\mathrm{BaCl}_{2}$	$0 \cdot 5$	$0 \cdot 153$	E.M.F.	$0 \cdot 6116$	$0 \cdot 6101$	0.6094	$0 \cdot 6079$	$0 \cdot 6068$	$0 \cdot 6061$	$0 \cdot 6047$
			$p_{\text {H }}$	$6 \cdot 153$	$6 \cdot 128$	$6 \cdot 116$	6.091	6.073	$6 \cdot 061$	$6 \cdot 039$
			$K \times 10^{7}$	$7 \cdot 1$	$7 \cdot 4$	$7 \cdot 7$	$8 \cdot 1$	$8 \cdot 5$	$8 \cdot 7$	$9 \cdot 1$
			$k \times 10^{7}$	$5 \cdot 7$	$5 \cdot 6$					
M/4-Mgs ${ }_{4}$	$0 \cdot 5$	$0 \cdot 119$	E.M.F.	$0 \cdot 6116$	$0 \cdot 6090$	$0 \cdot 6082$	10.6067	$0 \cdot 6059$	0.6050	$0 \cdot 6033$
				$6 \cdot 153$	$6 \cdot 110$	$6 \cdot 096$	$6 \cdot 071$	$6 \cdot 057$	$6 \cdot 043$	$6 \cdot 015$
			$K \times 10^{7}$	$7 \cdot 1)$	$7 \cdot 8$	8.0	$8 \cdot 5$	$8 \cdot 8$	$9 \cdot 1$	$9 \cdot 7$
			$k \times 10^{7}$	$5 \cdot 6$	$5 \cdot 8$	$5 \cdot 8$	$5 \cdot 8$	$\overline{5} \cdot 8$	$5 \cdot 7$	$5 \cdot 8$
			C.c. added	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 1$	7.0	$8 \cdot 0$	$9 \cdot 0$	$10 \cdot 0$
			μ	$0 \cdot 3143$	$0 \cdot 3601$	$0 \cdot 400$	0.4352	$0 \cdot 4667$	$0 \cdot 4948$	$0 \cdot 5 \% 04)$
$\underset{-}{ } \mathrm{NaCl}$	0.5	$0 \cdot 259$	E.M.F.	$0 \cdot 6055$	$0 \cdot 6050$	$0 \cdot 6048$	$0 \cdot 6043$	0.6040	0.6038	0.6035
			${ }^{p_{\mathrm{H}}} \times 10^{2}$	$6 \cdot 052$	6.043	6.039	$6 \cdot 032$	$6 \cdot 027$	$6 \cdot 023$	$6 \cdot 024$
			$K \times 10^{7}$	$8 \cdot 9$	$9 \cdot 1$	$9 \cdot 1$	$9 \cdot 3$	$9 \cdot 4$	$9 \cdot 5$	$9 \cdot 6$
			$k \times 10^{7}$	$5 \cdot 6$	$5 \cdot 6$	$5 \cdot 6$	$5 \cdot 6$	$5 \cdot 7$	$5 \cdot 7$	$5 \cdot 7$
$M / 3-\mathrm{K}_{2} \cdot \mathrm{SO}_{4}$	0.5	0.352	E.M.F.	$0 \cdot 6079$	0.6078	19.6070) 6.6063	$0 \cdot 6062$	$0 \cdot 6061$	$0 \cdot 6060$
			p_{H}	$6 \cdot 091$	$6 \cdot 089$	$6 \cdot 077$	$6 \cdot 064$	$6 \cdot 063$	$6 \cdot 061$	6.060
			$K \times 10^{7}$	$8 \cdot 1$	$8 \cdot 1$	$8 \cdot 4$	$8 \cdot 6$	$8 \cdot 7$	$8 \cdot 7$	$8 \cdot 7$
			$\mu \times 10^{7}$	$\overline{5} 5$	$5 \cdot 5$	$5 \cdot 6$	$5 \cdot 7$	$5 \cdot 7$	5.8	$5 \cdot 8$
$M_{i} 3-\mathrm{BaCl}_{2}$	0.5	$0 \cdot 153$	E.M.F.	$0 \cdot 6037$	$0 \cdot 6028$	$0 \cdot 6022$	0.6015	$0 \cdot 6012$	$0 \cdot 6009$	$0 \cdot 6004$
				$6 \cdot 022$	$6 \cdot 006$	$5 \cdot 996$	$5 \cdot 985$	5.980	$5 \cdot 974$	$5 \cdot 968$
			$K \times 10^{7}$	$9 \cdot 5$	$9 \cdot 9$	$10 \cdot 1$	$10 \cdot 4$	$10 \cdot 5$	$10 \cdot 6$	$10 \cdot 8$
			$k \times 10^{7}$	$5 \cdot 6$						
$\mathrm{M} / 4-\mathrm{MgSO}$	$0 \cdot 5$	$0 \cdot 119$	E.IM.F.	$0 \cdot 6025$	0.6011	0.6008	$0 \cdot 6002$	0.5995	0.5988	$0 \cdot 5986$
			p_{H}	$6 \cdot 002$	$5 \cdot 978$	$5 \cdot 973$	5.964	$5 \cdot 953$	$5 \cdot 940$	$5 \cdot 936$
			$K \times 10^{7}$	$10 \cdot 0$	$10 \cdot 5$	$10 \cdot 6$	10.9	11.1	11.5	$11 \cdot 6$
			$k \times 10^{7}$	$5 \cdot 7$	$5 \cdot 8$	$5 \cdot 7$	$5 \cdot 7$	$5 \cdot 8$	$5 \cdot 8$	$5 \cdot 8$
			Mea	n value	$k=5$	$66 \times 10^{-}$				

only rough correspondence between the two values. Moreover, the above considerations apply only to weak electrolytes, the dissociation constants of which lie within the limits 10^{-4} and 10^{-9} or 10^{-10}. In any attempt to formulate the dilution errors of strong electrolytes, or of the strongly hydrolysed salts of very weak electrolytes, the effects of changing concentration, as well as of changing ionic strength, must be taken into account. For such electrolytes, the dilution error may be provisionally formulated as $\pi^{\prime}=\Delta p_{\mathbf{H}} / \Delta C$, and determined experimentally.

Experimental.

The hydrogen electrode was used in conjunction with a saturated calomel half-cell, and with saturated potassium chloride solution as the junction liquid. The temperature was maintained at 30° by circulating water from an electrically controlled thermostat, by means of an " Albany " pump, through jackets surrounding the two electrode vessels.

(1) Dilution Experiments.

In these experiments (Table I) each solution was prepared by mixing 50 c.c. of the previous dilution with an equal volume of water, the same pipette being used.
The values of k, the thermodynamic dissociation constant, given in the last column of Table I, are those deduced from the limiting equation (1). At the highest dilutions studied (about $M / \mathbf{1}, \mathbf{0 0 0}$), the experimental error is necessarily somewhat large; it may be claimed, nevertheless, that the Debye-Hückel theory satisfactorily describes the hydrogen-ion relationships of mono- and di-basic mixtures over a wide range of concentration. For mixtures prepared from acids of higher valency, such as the pyrophosphate mixtures, the lack of constancy of k indicates that the use of the Debye-Hückel equation is justifiable only as a first approximation.

(2) Neutral-salt Experiments.

To 10 c.c. of the mixture under examination, successive small increments of N-potassium chloride, N-sodium chloride, $\mathrm{M} / 3$ 3 A 2

Table VI.
Phthalic acid mixture.

$\begin{array}{r} \text { Salt. } \\ N-\mathrm{NaCl} \end{array}$			C.c. added	$\begin{aligned} & 0.5 \\ & 0.0857 \end{aligned}$	$\begin{aligned} & 1 \cdot 0 \\ & 0 \cdot 1273 \end{aligned}$	$\begin{aligned} & 1 \cdot 5 \\ & 0 \cdot 1652 \end{aligned}$	$\begin{aligned} & 2 \cdot 0 \\ & 0 \cdot 2000 \end{aligned}$	$\begin{aligned} & 3 \cdot 0 \\ & 0 \cdot 2616 \end{aligned}$	$\begin{aligned} & 4 \cdot 0 \\ & 0 \cdot 3143 \end{aligned}$
	$\begin{aligned} & A \\ & 1.5 \end{aligned}$	$\begin{gathered} B . \\ 0.759 \end{gathered}$	μ						
			E.M.F.	$0 \cdot 5414$	$0 \cdot 5380$	$0 \cdot 5353$	0.5331	$0 \cdot 5302$	$0 \cdot 5280$
			$p_{\text {E }}$	$4 \cdot 952$	4.895	$4 \cdot 851$	$4 \cdot 814$	$4 \cdot 766$	$4 \cdot 730$
			$K_{2} \times 10^{8}$	11.2	$12 \cdot 7$	$14 \cdot 1$	$15 \cdot 4$	$17 \cdot 1$	$18 \cdot 6$
			$k_{2} \times 10^{6}$	$4 \cdot 7$	$4 \cdot 7$	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 7$
M/3- $\mathrm{K}_{2} \mathrm{SO}_{4}$	1.5	0.961	E.M.F.	0.5426	$0 \cdot 5400$	0.5378	0.5363	0.5345	$0 \cdot 5330$
			$p_{\boldsymbol{Z}}$	$4 \cdot 972$	$4 \cdot 928$	$4 \cdot 891$	$4 \cdot 867$	4.838	$4 \cdot 818$
			$K_{2} \times 10^{8}$	$10 \cdot 7$	11.8	$12 \cdot 9$	$13 \cdot 6$	14.5	$15 \cdot 4$
			$k_{2} \times 10^{6}$	$4 \cdot 7$	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 5$	$4 \cdot 4$	$4 \cdot 4$
$M-\mathrm{BaCl}_{2}$	$1 \cdot 5$	0.435	E.M.F.	0.5337	0.5248	$0 \cdot 5201$	$0 \cdot 5162$	0.5116	$0 \cdot 5086$
			$p_{\text {H }}$	$4 \cdot 823$	$4 \cdot 677$	$4 \cdot 597$	$4 \cdot 533$	$4 \cdot 457$	$4 \cdot 407$
			$K_{2} \times 10^{6}$	$15 \cdot 0$	21.0	$25 \cdot 3$	29.3	$34 \cdot 9$	$39 \cdot 2$
			$k_{2} \times 10^{6}$	$5 \cdot 9$	$6 \cdot 9$	$7 \cdot 3$	$7 \cdot 6$	$7 \cdot 7$	$7 \cdot 8$
$N-\mathrm{SCl}$	$1 \cdot 5$	0.845	E.M.F.	$0 \cdot 5417$	0.5389	0.5365	0.5340	0.5315	$0 \cdot 5294$
				$4 \cdot 957$	$4 \cdot 910$	4.871	$4 \cdot 828$	$4 \cdot 787$	$4 \cdot 752$
			$K_{3} \times 10^{6}$	$11 \cdot 0$	$12 \cdot 3$	13.5	$14 \cdot 9$	16.3	$17 \cdot 7$
			$k_{2} \times 10^{6}$	$5 \cdot 2$	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 7$	$4 \cdot 6$	$4 \cdot 7$
$M / 4-\mathrm{MgSO}_{4}$	$1 \cdot 5$	$0 \cdot 466$	E.M.F.	0.5373	$0 \cdot 5326$	$0 \cdot 5290$	$0 \cdot 5263$	$0 \cdot 5225$	0.5199
			$p_{\text {H }}$	$4 \cdot 884$	$4 \cdot 806$	$4 \cdot 745$	$4 \cdot 700$	$4 \cdot 637$	$4 \cdot 594$
			$K_{2} \times 10^{6}$	$13 \cdot 1$	$15 \cdot 6$	$18 \cdot 0$	$20 \cdot 0$	$23 \cdot 1$	25.5
			$k_{2} \times 10^{6}$	$5 \cdot 2$	$5 \cdot 2$	$5 \cdot 3$	$5 \cdot 3$	$5 \cdot 2$	$5 \cdot 2$
			C.c. added	$5 \cdot 0$	$6 \cdot 0$	$7 \cdot 0$	$8 \cdot 0$	$9 \cdot 0$	$10 \cdot 0$
			μ	0.3601	0.4000	$0 \cdot 4352$	$0 \cdot 4667$	$0 \cdot 4948$	$0 \cdot 5200$
- $\mathrm{V}-\mathrm{NaCl}$	1.5	0.759	E.M.F.	$0 \cdot 5266$	$0 \cdot 5256$	0.5246	$0 \cdot 5232$	$0 \cdot 5227$	$0 \cdot 5220$
			$p_{\text {E }}$	「4.706	$4 \cdot 689$	$4 \cdot 673$	$4 \cdot 649$	$4 \cdot 640$	$4 \cdot 629$
			$K_{2} \times 10^{0}$	$19 \cdot 7$	$20 \cdot 5$	$21 \cdot 2$	$22 \cdot 4$	$22 \cdot 9$	$23 \cdot 5$
			$k_{2} \times 10^{6}$	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 6$	$4-8$	$4 \cdot 8$	$4 \cdot 8$
$M / 3-\mathrm{K}_{2} \mathrm{SO}_{4}$	1.5	0.961	E.M.F.	$0 \cdot 5320$	0.5310	$0 \cdot 5306$	$0 \cdot 5300$	$0 \cdot 5292$	0.5290
			$p_{\text {E }}$	$4 \cdot 796$	4.779	$4 \cdot 773$	$4 \cdot 762$	$4 \cdot 749$	4.745
			$\mathrm{K}_{2} \times 10^{8}$	16.0	16.6	$16 \cdot 9$	$17 \cdot 3$	$17 \cdot 8$	18.0
			$k_{2} \times 10^{6}$	$4 \cdot 5$	$4 \cdot 5$	$4 \cdot 5$	$4 \cdot 6$	$4 \cdot 7$	$4 \cdot 7$
$M / 3 \cdot \mathrm{BaCl}_{2}$	1.5	0.435	E.M.F.	$0 \cdot 5064$	$0 \cdot 5049$	$0 \cdot 5033$	$0 \cdot 5020$	$0 \cdot 5012$	$0 \cdot 5010$
			$p_{\text {H }}$	$4 \cdot 367$	$4 \cdot 344$	$4 \cdot 318$	$4 \cdot 296$	$4 \cdot 284$	$4 \cdot 280$
			$K_{3} \times 10^{8}$	$42 \cdot 8$	$45 \cdot 3$	48.1	$50 \cdot 6$	$52 \cdot 0$	52.5
			$k_{2} \times 10^{6}$	$7 \cdot 8$	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 5$	$7 \cdot 3$
$N-\mathrm{KCl}$	1.5	0.845	E.M.F.	$0 \cdot 5280$	$0 \cdot 5277$	$0 \cdot 5270$	$0 \cdot 5264$	0.5259	$0 \cdot 5251$
			$p_{\text {H }}$	$4 \cdot 730$	$4 \cdot 724$	$4 \cdot 713$	$4 \cdot 702$	$4 \cdot 693$	$4 \cdot 680$
			$K_{2} \times 10^{6}$	$18 \cdot 6$	$18 \cdot 9$	$19 \cdot 4$	$19 \cdot 9$	$20 \cdot 3$	$20 \cdot 9$
			$k_{2} \times 10^{4}$	$4 \cdot 7$	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 6$	$4 \cdot 7$	$4 \cdot 8$
M/4-MgSO	1.5	$0 \cdot 466$	E.M.F.	$0 \cdot 5180$	0.5164	$0 \cdot 5150$	0.5139	$0 \cdot 5130$	$0 \cdot 5121$
			$p_{\text {H }}$	$4 \cdot 563$	$4 \cdot 536$	$4 \cdot 513$	$4 \cdot 494$	$4 \cdot 480$	$4 \cdot 465$
			$\mathrm{H}_{2} \times 10^{6}$	$27 \cdot 4$	$29 \cdot 1$	$30 \cdot 7$	$32 \cdot 1$	$33 \cdot 1$	34.3
			$k_{2} \times 10^{6}$	$5 \cdot 1$	$5 \cdot 0$	$5 \cdot 0$	$5 \cdot 0$	$4 \cdot 9$	$5 \cdot 0$

potassium sulphate, $M / 3$-barium chloride, or $M / 4$-magnesium sulphate were added, and the E.M.F. at each stage was determined. The salts were Kahlbaum's " for analysis, with certificate of guarantee."

The values of k given in Tables II-IX were computed by means of the expression $p_{k}=p_{\text {日 }}+A \sqrt{\mu}-B \mu$. In general, k is constant within the limits of experimental error, i.e., throughout the range of salt concentrations studied $(0.0-0.5 N)$, the activation effect is in accordance with the Debye-Hückel theory. Apparent deviations are met with (a) in strongly acid mixtures in the presence of potassium and magnesium sulphates, (b) in slightly alkaline mixtures on the addition of magnesium sulphate and barium chloride. It is probable that in these cases we are dealing, not with a simple

Table VII.

Glycerylphosphoric acid mixture.										
$\left[\mathrm{HA}^{\prime}\right]=\left[\mathrm{A}^{\prime \prime}\right]=0.01$.										
$\begin{gathered} \text { Salt. } \\ N-\mathrm{KCl} \end{gathered}$			C.c. added	$0 \cdot 0$	$0 \cdot 3$	$0 \cdot 5$	1.0	1.5	$2 \cdot 0$	$3 \cdot 0$
	A.	B.	μ	$0 \cdot 040$	0.0680	$0 \cdot 0857$	$0 \cdot 1273$	$0 \cdot 1652$	$0 \cdot 200$	$0 \cdot 2616$
	$1 \cdot 5$	0.837	E.M.F.	$0 \cdot 6296$	$0 \cdot 6258$	$0 \cdot 6240$	$0 \cdot 6206$	$0 \cdot 6185$	0.6170	U.6138
			$p_{\text {H }}$	$6 \cdot 452$	$6 \cdot 389$	$6 \cdot 359$	$6 \cdot 304$	$6 \cdot 268$	$6 \cdot 944$	$6 \cdot 192$
			$K \times 10^{7}$	$3 \cdot 5$	$4 \cdot 1$	$4 \cdot 4$	$5 \cdot 0$	$5 \cdot 4$	$5 \cdot 7$	$6 \cdot 4$
			$k \times 10^{7}$	1.8	1.9	1.9	1.9	1.8	1.8	1.8
$\sim \mathrm{N}-\mathrm{NaCl}$	1.5	$0 \cdot 629$	E.N.F.	$0 \cdot 6296$	$0 \cdot 6254$	$0 \cdot 6238$	$0 \cdot 6204$	$0 \cdot 6174$	0.6149	0.6117
			$p_{\text {E }}$	$6 \cdot 452$	$6 \cdot 383$	$6 \cdot 357$	$6 \cdot 300$	$6 \cdot 250$	$6 \cdot 209$	$6 \cdot 155$
			$K \times 10^{7}$	$3 \cdot 5$	$4 \cdot 1$	$4 \cdot 4$	$5 \cdot 0$	$5 \cdot 6$	$6 \cdot 2$	$7 \cdot 0$
			$k \times 10^{7}$	$1 \cdot 8$	1.8	1.8	$1 \cdot 8$	$1 \cdot 8$	1.8	1.7
$M / 3-\mathrm{K}_{2} \mathrm{SO}_{4}$	1.5	$0 \cdot 965$	E.M.F.	$0 \cdot 6296$	$0 \cdot 6260$	$0 \cdot 6250$	0.6225	$0 \cdot 6204$	0.6194	$0 \cdot 6170$
			$p_{\text {H }}$	$6 \cdot 452$	$6 \cdot 392$	$6 \cdot 375$	$6 \cdot 334$	$6 \cdot 299$	$6 \cdot 282$	$6 \cdot 241$
			$K \times 10^{7}$	$3 \cdot 5$	$4 \cdot 1$	$4 \cdot 2$	$4 \cdot 6$	$5 \cdot 0$	$5 \cdot 2$	$5 \cdot 7$
			$k \times 10^{7}$	1.8	1.9	1.8	1.8	1.8	1.7	1.8
$M / 3-\mathrm{BaCl}_{3}$	1.5	$0 \cdot 256$	E.M.F.	$0 \cdot 6296$	$0 \cdot 6190$	0.6149	$0 \cdot 6095$	$0 \cdot 6044$	0.6008	$0 \cdot 5962$
			$p_{\text {If }}$	$6 \cdot 452$	6.275	$6 \cdot 207$	$6 \cdot 119$	6.033	5.973	5. 896
			$K \times 10^{7}$	$3 \cdot 5$	$5 \cdot 3$	$6 \cdot 2$	$7 \cdot 6$	$9 \cdot 3$	$10 \cdot 6$	12.7
			$k \times 10^{7}$	1.8	$2 \cdot 2$	$2 \cdot 4$	$2 \cdot 4$	$2 \cdot 5$	$2 \cdot 6$	$2 \cdot 5$
$\mathrm{M} / 4-\mathrm{MgSO}$	$1 \cdot 5$	$0 \cdot 288$	E.M.F.	0.6296	$0 \cdot 6180$	$0 \cdot 6144$	$0 \cdot 6062$	$0 \cdot 6010$	0.598.5	$0 \cdot 5935$
				$6 \cdot 452$	$6 \cdot 260$	$6 \cdot 200$	$6 \cdot 064$	$5 \cdot 977$	$5 \cdot 936$	5.852
			$K \times 10^{7}$	$3 \cdot 5$	$5 \cdot 5$	$6 \cdot 3$	$8 \cdot 6$	$10 \cdot 5$	$11 \cdot 6$	$14 \cdot 1$
			$k \times 10^{7}$	1.8	$2 \cdot 3$	$2 \cdot 4$	$2 \cdot 7$	$2 \cdot 9$	$2 \cdot 8$	$2 \cdot 8$
			C.c. added	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 0$	7.0	$8 \cdot 0$	$9 \cdot 1)$	$10 \cdot 0$
			μ	$0 \cdot 3143$	$0 \cdot 3601$	$0 \cdot 4000$	$0 \cdot 4352$	$0 \cdot 4667$	$0 \cdot 1948$	0.5200
$N-\mathrm{KCl}$	1.5	0.837	E.M.F.	$0 \cdot 6120$	$0 \cdot 6109$	$0 \cdot 6099$	$0 \cdot 6090$	$0 \cdot 6083$	$0 \cdot 6078$	$0 \cdot 6072$
				$6 \cdot 159$	6-142	$6 \cdot 126$	$6 \cdot 110$	$6 \cdot 099$	$6 \cdot 091$	$6 \cdot 081$
			$K \times 10^{7}$	6.9	$7 \cdot 2$	$7 \cdot 5$	$7 \cdot 8$	$8 \cdot 0$	$8 \cdot 1$	$8 \cdot 3$
			2×10^{7}	1.8	1.8	1.8	1.8	1.8	1.8	1.9
$N-\mathrm{NaCl}$	1.5	$0 \cdot 629$	E.M.F.	$0 \cdot 6089$	$0 \cdot 6072$	$0 \cdot 6056$	$0 \cdot 6043$	$0 \cdot 6032$	$0 \cdot 6028$	$0 \cdot 6020$
			$p_{\text {B }}$	$6 \cdot 108$	$6 \cdot 080$	$6 \cdot 053$	$6 \cdot 032$	$6 \cdot 013$	$6 \cdot 006$	5.994
			$K \times 10^{7}$	7.8	8.3	$8 \cdot 9$	$9 \cdot 3$	$9 \cdot 7$	$9 \cdot 9$	$10 \cdot 1$
			$k \times 10^{7}$	1.8	1.8	1.8	1.8	1.8	1.8	1.8
$M / 3-\mathrm{K}_{2} \mathrm{SO}_{4}$	1.5	0.965	E.MI.F.	0.6154	$0 \cdot 6142$	$0 \cdot 6136$	$0 \cdot 6129$	$0 \cdot 6128$	$0 \cdot 6129$	$0 \cdot 6115$
			$p_{\text {H }}$	$6 \cdot 216$	$6 \cdot 195$	$6 \cdot 186$	$6 \cdot 175$	$6 \cdot 173$	$6 \cdot 163$	$6 \cdot 152$
			$K \times 10^{7}$	$6 \cdot 1$	6.4	$6 \cdot 5$	$6 \cdot 7$	6.7	$6 \cdot 9$	7.0
			$k \times 10^{7}$	1.8	1.8	1.8	1.8	1.8	1.8	1.8
$M / 3-\mathrm{BaCl}_{2}$	1.5	$0 \cdot 256$	E.M.F.	0.5921	0.5903	0.5881	0.5855	0.5850	$0 \cdot 5840$	$0 \cdot 5829$
			$p_{\text {R }}{ }^{\text {r }}$	5.829	5.799	5.762	$5 \cdot 719$	$5 \cdot 711$	5-694	5.676
			$\pi \times 10^{7}$	14.8	$15 \cdot 9$	$17 \cdot 3$	$19 \cdot 1$	$19 \cdot 5$	$20 \cdot 3$	21.1
			$k \times 10^{7}$	$2 \cdot 6$	$2 \cdot 5$	2.5	$2 \cdot 5$	$2 \cdot 4$	$2 \cdot 4$	$2 \cdot 4$
$\boldsymbol{M} / 4-\mathrm{MgSO}_{4}$	1.5	$0 \cdot 288$	E.M.F.	0.5902	0.5880	0.5862	$0 \cdot 5845$	0.5834	0.582 .7	$0 \cdot 5815$
			$p_{\text {H }}$	$5 \cdot 798$	$5 \cdot 761$	$5 \cdot 731$	$5 \cdot 703$	$5 \cdot 684$	$5 \cdot 669$	$5 \cdot 653$
			$K \times 10^{7}$	$15 \cdot 9$	$17 \cdot 3$	$18 \cdot 6$	19.8	20.7	$21 \cdot 5$	$22 \cdot 3$
			2×10^{7}	$2 \cdot 8$	2.8	$2 \cdot 7$	$2 \cdot 7$	$2 \cdot 7$	$2 \cdot 6$	$2 \cdot 6$
			Mea	value	f $k_{2}=1$	$80 \times 10^{-}$				

activation effect, but with a displacement of the acid-base equilibria. Ionic reactions, such as (a) $\mathrm{SO}_{4}{ }^{\prime \prime}+\mathrm{H}^{-} \rightleftharpoons \mathrm{HSO}_{4}{ }^{\prime}$, (b) $\mathrm{Ba}^{\prime \prime}+\mathrm{OH}^{\prime} \rightleftharpoons \mathrm{Ba}(\mathrm{OH})^{\circ}$, which tend to diminish the hydrogen(or hydroxyl-) ion concentration, lead to an alteration of the ratio [acid]/[salt]. In such circumstances it is no longer correct to assume, as is done in computing both K and k, that this ratio is independent of salt concentration.

Conclusions.
(1) The buffer unit of Van Slyke, viz., $\beta=d B / d p_{\mathbf{H}}$, is not in itself a true criterion of buffer efficiency. It is suggested that this value should be supplemented by the unit $\pi=d p_{\mathrm{H}} / d \sqrt{\bar{\mu}}$ expressing the dilution and neutral-salt errors.

1412 dilution and neutral-Salt errors of buffer mixtures.
Table VIII.
Pyrophosphoric acid mixture (i).

Table IX.
Pyrophosphoric acid mixture (ii).
$\left[\mathrm{HA}^{\prime \prime \prime}\right]=\left[\mathrm{A}^{\prime \prime \prime \prime}\right]=0.02$.

$\begin{gathered} \text { Salt. } \\ N-\mathrm{KCl} \end{gathered}$			C.c. added	$0 \cdot 0$	$0 \cdot 3$	$0 \cdot 5$	$1 \cdot 0$	1.5	$2 \cdot 0$	$3 \cdot 0$
	$\begin{gathered} A . \\ 3 \cdot 497 \end{gathered}$	$\begin{gathered} B . \\ 1.33 \end{gathered}$	μ	$0 \cdot 3400$	$0 \cdot 3598$	$0 \cdot 3715$	$0 \cdot 4003$	$0 \cdot 4262$	$0 \cdot 4498$	$0 \cdot 4926$
			E.M.F.	$0 \cdot 7410$	0.7380	$0 \cdot 7369$	0.7335	0.7318	0.7292	$0 \cdot 7260$
			$p_{\text {H }}$	$8 \cdot 307$	$8 \cdot 256$	$8 \cdot 237$	$8 \cdot 181$	$8 \cdot 153$	$8 \cdot 108$	$8 \cdot 056$
			$K_{4} \times 10^{10}$	$49 \cdot 3$	$55 \cdot 5$	$57 \cdot 9$	$65 \cdot 9$	$70 \cdot 3$	$78 \cdot 0$	87.9
			$k_{4} \times 10^{10}$	$1 \cdot 3$	$1 \cdot 3$	$1 \cdot 3$	$1 \cdot 4$	1.3	1.4	1.4
$\mathrm{N}-\mathrm{NaCl}$	$3 \cdot 22$	$0 \cdot 687$	E.M.F.	$0 \cdot 7410$	0.7376	$0 \cdot 7358$	$0 \cdot 7303$	$0 \cdot 7265$	0.7237	$0 \cdot 7190$
			$p_{\text {H }}$	$8 \cdot 307$	$8 \cdot 249$	$8 \cdot 219$	$8 \cdot 127$	$8 \cdot 063$	$8 \cdot 017$	$7 \cdot 939$
			$K_{4} \times 10^{10}$	$49 \cdot 3$	56.4	$60 \cdot 4$	$74 \cdot 6$	86.5	96.2	$115 \cdot 1$
			$k_{4} \times 10^{10}$	$1 \cdot 1$	$1 \cdot 2$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 3$	$1 \cdot 4$	1.4
$\mathrm{M} / 3 \cdot \mathrm{~K}_{2}: 3 \mathrm{O}_{4}$	$3 \cdot 69$	1.74	E.M.F.	$0 \cdot 7410$	0.7392	$0 \cdot 7384$	$0 \cdot 7365$	$0 \cdot 7349$	0.7337	0.7320
				$8 \cdot 307$	$8 \cdot 275$	$8 \cdot 262$	$8 \cdot 230$	$8 \cdot 204$	$8 \cdot 185$	$8 \cdot 156$
			$K_{4} \times 10^{10}$	$49 \cdot 3$	$53 \cdot 1$	$54 \cdot 7$	$58 \cdot 9$	62.5	$65 \cdot 3$	$69 \cdot 8$
			$i l i s \times 10^{10}$	$1 \cdot 1$	$1 \cdot 4$	$1 \cdot 4$	$1 \cdot 3$	1.3	$1 \cdot 3$	$1 \cdot 3$
			C.c. added	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 0$	$7 \cdot 0$	$8 \cdot 0$	$9 \cdot 0$	$10 \cdot 0$
			μ	0.5288	$0 \cdot 5604$	0.5875	$0 \cdot 6115$	0.6332	0.6531	0.6700
$\boldsymbol{N - K C l}$	$3 \cdot 497$	$1 \cdot 33$	E. M.F.	0.7239	$0 \cdot 7222$	$0 \cdot 7207$	0.7195	0.7185	0.7178	0.7170
				$8 \cdot 021$	$7 \cdot 391$	$7 \cdot 968$	$7 \cdot 947$	7-930	$7 \cdot 920$	$7 \cdot 907$
			$K_{4} \times 10^{10}$	$95 \cdot 3$	102	108	113	118	120	124
			$k_{4} \times 10^{10}$	$1 \cdot 4$	$1 \cdot 4$	$1 \cdot 3$				
$N-\mathrm{NaCl}$	$3 \cdot 22$	$0 \cdot 687$	E.M.F.	0.7152	0.7125	0.7102	0.7084	$0 \cdot 7067$	0.7052	$0 \cdot 7041$
				7.877	7.830	$7 \cdot 793$	$7 \cdot 764$	7.736	$7 \cdot 711$	7.691
			$K_{4} \times 10^{10}$	133	148	161	172	184	195	204
			$k_{4} \times 10^{10}$	$1 \cdot 4$	$1 \cdot 4$	$1 \cdot 4$	$1 \cdot 4$	1.4	1.4	$1 \cdot 3$
$\mathrm{M} / 3 \mathrm{~K} \mathrm{SO}_{4}$	$3 \cdot 69$	1.74	E.M.F.	0.7308	0.7289	$0 \cdot 7282$	0.7273	$0 \cdot 7268$	$0 \cdot 7263$	0.7257
			p_{H}	$8 \cdot 136$	8-104	$8 \cdot 091$	$8 \cdot 076$	$8 \cdot 069$	$8 \cdot 060$	$8 \cdot 050$
			$K_{4} \times 10^{10}$	$73 \cdot 1$	$78 \cdot 7$	81.1	$84 \cdot 0$	$85 \cdot 3$	87-1	$89 \cdot 1$
			$i_{2} \times 10^{10}$	$1 \cdot 3$	$1 \cdot 3$	$1 \cdot 3$	$1 \cdot 3$	1.2	1.2	$1 \cdot 2$

(2) The limiting dilution error is independent of the strength and specific nature of the buffer electrolyte, depending only on the valency type.
(3) The limiting dilution error of a monobasic buffer mixture is $\pi=-0.5$; that of an n-valent mixture is approximately $(2 n-1)$ times as great.
(4) The neutral-salt error is described by the Debye-Hückel equation in the form $p_{k}=p_{K}+A \sqrt{\mu}-B \mu$. The value of A for an n-valent buffer mixture is approximately ($n-0 \cdot 5$). The value of B depends on the specific nature of the salt, and on the strength and valency of the buffer electrolyte.
(5) The " thermodynamic dissociation constants" of aspartic $\left(k_{A_{1}}\right)$, acetic, cacodylic, o-phthalic (k_{2}), α-glycerylphosphoric (k_{2}), and pyrophosphoric (k_{3}, k_{4}) acids, and of arginine ($k_{B_{1}}$) have been determined.

The author wishes to express his indebtedness to the Principal and Head of the Chemical Department for the provision of facilities, and to Dr. J. C. Crocker for the kind interest he has taken in the work. A grant from the Dixon Fund of the University of London is gratefully acknowledged.

Chelsea Polytechnic.

