CLXXXIII.—The Dilution and Neutral-salt Errors of Buffer Mixtures.

By CHARLES MORTON.

OWING to the wide distribution of neutral salts in tissues and bodyfluids, the well-known fact that the apparent hydrogen-ion concentration of buffer mixtures is increased on the addition of neutral salts is of especial importance in biochemical investigations. In the case of polybasic buffers, such as the phosphate mixtures, neglect of neutral-salt effects may lead to appreciable error. The problem has been examined, so far as the phosphate mixtures are concerned, by Michaelis and Krüger (*Biochem. Z.*, 1921, **119**, 307), and by Cohn (*J. Amer. Chem. Soc.*, 1927, **49**, 173), but no systematic investigation of the dilution and salt errors of buffer mixtures in general appears to have been undertaken.

The properties of the following mixtures have now been studied : (1) Half-neutralised solutions of acetic and cacodylic acids; (2) one-fourth-neutralised solutions of aspartic acid and of arginine : (3) three-fourths-neutralised solutions of o-phthalic and α -monoglycerylphosphoric acids; (4) mixtures of sodium pyrophosphate and hydrochloric acid in the molecular proportions (a) 2 : 3, (b) 2 : 1. For such mixtures we have, respectively, (1) $p_{\rm H} = p_{\rm K}$, (2) $p_{\rm H} = p_{\rm K_1}$, (3) $p_{\rm H} = p_{\rm K_2}$, (4a) $p_{\rm R} = p_{\rm K_3}$. (4b) $p_{\rm R} = p_{\rm K_4}$, where $K = 10^{-p_{\rm K}}$ is the apparent dissociation constant of the buffer electrolyte. To these solutions various amounts of N-potassium chloride, N-sodium chloride, M/3-potassium sulphate, M/3-barium chloride, and M/4-magnesium sulphate were added, and the $p_{\rm H}$ (or $p_{\rm X}$) change produced by each addition was noted. The effect of dilution was also studied.

The experimental results are in Tables I–IX. In all cases p_K decreases on the addition of neutral salts, but increases on dilution. Both effects become more strongly marked as the valency of the buffer acid increases. When the concentration of added salt is small, the $p_{\rm H}$ change is independent of the specific nature of the salt, depending only on the valency type; with larger additions a specific salt action is exhibited. As regards the importance of their effects in inducing $p_{\rm H}$ change in acid buffer mixtures, the influence of neutral salts is in the order BaCl₂>MgSO₄>NaCl>KCl>K₂SO₄, whatever the nature of the buffer acid. For basic buffers the order is reversed : K₂SO₄>KCl>NaCl.

In dilute solution, when free acid and salt were present in equivalent concentration, the p_K or $p_{\rm H}$ changes brought about by further dilution, or by the addition of small quantities of neutral salts, were satisfactorily described by the equation

$$p_k = p_{\rm H} + A \sqrt{\mu} = p_{\rm K} + A \sqrt{\mu}$$
 . . . (1)

where μ is the ionic strength as defined by Lewis and Randall (J. Amer. Chem. Soc., 1921, 43, 1112), and p_k and A are true constants. When acid and salt are not present in equivalent concentration, the equation

$$p_{k} = p_{H} + \log [\text{acid}]/[\text{salt}] + A\sqrt{\mu}$$
 . . (2)

applies within the limits of validity of Henderson's equation (i.e., within the $p_{\rm H}$ limits 4--10). The numerical value of A is 0.5 for monobasic acids, of the order of 1.5 for dibasic acids, 2.5 for tribasic acids, and, in general, roughly equal to (n - 0.5) for an *n*-valent acid.

In solutions of higher ionic strength, the hydrogen-ion relationships are defined by the expression

or

$$p_k = p_{\rm H} + \log [{\rm acid}]/[{\rm salt}] + A\sqrt{\mu} - B\mu$$
 . (4)

The constants A and p_k have the same significance and numerical values as before, and B is a coefficient expressing the specific action of the ions. Let the values of p_K in three buffer solutions containing identical ions, but of different ionic strengths μ' , μ'' , μ''' , be $p_{K'}$, $p_{K''}$, and $p_{K'''}$, respectively. Then $p_k = p_{K'} + A\sqrt{\mu'} - B\mu' = p_{K''} + A\sqrt{\mu''} - B\mu'' = p_{K'''} + A\sqrt{\mu''} - B\mu''$

whence
$$A = \frac{ac_1 - a_1c}{bc_1 - b_1c}$$
 and $B = \frac{ab_1 - a_1b}{bc_1 - b_1c}$. (5)

Walness of P for

where

$$a = p_{K''} - p_{K'}, b = \sqrt{\mu'} - \sqrt{\mu''}, c = \mu' - \mu''.$$

$$a_1 = p_{K'''} - p_{K'}, b_1 = \sqrt{\mu'} - \sqrt{\mu'''}, c_1 = \mu' - \mu'''$$

By means of (5) the values of A and B may be obtained independently of one another, and by substitution in equation (3) p_k is obtained.

By the use of this method, the values of A, B, and p_k given in Tables II—IX were obtained. The constancy of k throughout ranges of dilution and salt concentration varying from N/2 to N/1000 is in general good, and appears to justify the use of the above method of formulation. The mean values of p_k and the salt coefficient B for the salts and mixtures studied were as follows (C is the molar concentration of the free acid and of the salt):

				values of B for							
Buffer electrolyte.		C.	p_k .	K2SO4.	KCl.	NaCl.	MgSO4.	BaCl ₂ .			
Aspartic acid	K	0.02	3.895	0.485	0.402	0.252	0.209	0.057			
Acetic acid	K	0.01	4.735	0.411	0.348	0.295	0.160	0.148			
Cacodylic acid	K	0.04	6.247	0.352		0.259	0.119	0.153			
Phthalic acid	K_{2}	0.01	5.333	0.961	0.845	0.759	0.466	0.435			
a-Glycerylphosphoric	-										
acid	K_{2}	0.01	6.744	0.965	0.837	0.629	0.288	0.256			
Pyrophosphoric acid	K_3	0.02	6.704	1.48	1.29	0.983					
Pyrophosphoric acid	K_4	0.02	9.880	1.74	1.33	0.687					
Arginine	K_{B_1}	0.005	5.178	0.371	0.408	0· 466					

It is clear that the value of B depends on the specific nature of the salt, and to a less extent on the strength and valency of the buffer acid, decreasing slightly with decreasing strength of the acid and increasing with the valency of the acid.

The Quantitative Expression of Buffer Capacity.

Van Slyke (J. Biol. Chem., 1922, 52, 525) has suggested as a unit of buffer capacity the differential ratio $\beta = dB/dp_{\rm H}$, expressing the relationship between the increment dB of strong base and the resulting $p_{\rm H}$ change. The practical value of a buffer solution depends on the degree of resistance offered to changes in hydrogen-ion concentration occasioned (1) by the presence of acid or basic impurities, (2) by errors of dilution, or by the presence of foreign salts. If trustworthy conclusions as to the reproducibility of a given solution are to be drawn, the magnitude of the errors due to both sources must be known. This point may be illustrated by a comparison of the effects of strong bases and of dilution on the hydrogen-ion concentration of (a) 0.1N-sulphuric acid, (b) 0.1N-glycine, (c) 0.1Nstandard acetate.

	(a).	<i>(b)</i> .	(c).
$p_{\rm H}$ change on adding 0.005 equiv. of strong base	0.026	2.48	0.043
$p_{\mathbf{H}}$ change on ten-fold dilution	0.88	0.059	0.061
$\beta = \Delta B / \Delta p_{\rm H}$	0.19	0.002	0.12
$\pi' = \Delta p_{\rm H} / \Delta C$	9.8	-0.66	-0.68

The dilution error (provisionally formulated as $\pi' = \Delta p_{\rm H}/\Delta C$) involved in the preparation of 0·1*N*-sulphuric acid is 14 times as great as that of standard acetate; this accounts for the experimental observation that, whereas the former solution has the higher β value, the latter is the more readily reproduced. On the other hand, although 0·1*N*-glycine and 0·1*N*-standard acetate have approximately the same dilution errors, the alkali-resisting capacity of standard acetate is 60 times as great as that of the glycine. Of the three solutions, only standard acetate fulfils the requirements of an ideal buffer solution, combining a high β value with a low π' or dilution error.

It appears desirable to supplement the β value of van Slyke by a second unit which will serve as a criterion of the probable dilution or salt error. It has been shown above that in the case of typical buffer mixtures, *i.e.*, mixtures prepared from acids or bases the dissociation constants of which lie between the limits 10^{-4} and 10^{-10} , the dilution and salt errors are functions of the ionic strength rather than of concentration. The proposed unit will be defined, therefore, as the differential ratio $\pi = dp_{\rm H}/d\sqrt{\mu}$. When both the β and π values of a solution are stated, the buffer efficiency is completely defined : the higher the β value, and the lower the π value, the greater the efficiency.

For a typical buffer mixture within the range of validity of Henderson's equation, we have, from (4),

$$\pi = dp_{\rm H}/d\sqrt{\mu} = 2B\sqrt{\mu} - A$$
 . . . (6)

since the values of p_k and the ratio of acid to salt are inappreciably affected by dilution or by the addition of neutral salts.

In solutions of low ionic strength ($\mu < 0.01$), e.g., in dilute buffer solutions, (6) reduces to

$$\pi = -A = 0.5 - n \dots (7)$$

From equations (6) and (7) it can be deduced that :

(1) The dilution error, unlike the β value, is independent of the strength of the buffer electrolyte.

(2) The limiting dilution error is the same for all mixtures of the same salt and acid, e.g., all the phosphate mixtures of Clark and Lubs have the same limiting dilution error.

(3) All buffer mixtures prepared from monobasic acids or monoacid bases have the same limiting dilution error, viz., -0.5.

(4) The limiting dilution error rapidly increases with the valency of the buffer acid or base. For dibasic acids, e.g., the phthalate and phosphate mixtures, the error is 3 times as great as for monobasic acid mixtures. Hence, *ceteris paribus*, monobasic buffer mixtures are preferable to polybasic mixtures.

Buffer electrolyte.	A.	с.	$\sqrt{\mu}.*$	E.M.F.	$p_{\rm H}.$	K.	k.
Aspartic acid $\dagger \dots K_1$	0.5	0·02 0·01	$0.142 \\ 0.101$	0·4721 0·4748	$3.832 \\ 3.878$	1·5×10-4 1·4	1.27×10^{-4} 1.21
		$0.005 \\ 0.0025$	$0.072 \\ 0.051$	0·4757 0·4782	3∙892 3∙933	$1.3 \\ 1.3$	1·24 1·26
		0.00125	0.032	0.4793	3.952	1.3	1.28
Cacodylic acid K	0.2	0·04 0·02	0·200 0·141	0·6116 0·6123	6·153 6·165	7·0×10-7 6·8	5·6×10-7 5·8
		0.01	0.100	0.6135	6.184	6 ·5	5.8
		0.005	0.0707		6 ·198	6.3	5.8
		$0.0025 \\ 0.00125$	$0.050 \\ 0.035$	0·6145 0·6150	6·200 6·209	6·3 6·2	5·9 5·9
Phthalic acid K ₂	1.5	0.010	0.200	0.5476	5.055	8.8×10^{-6}	$4 \cdot 4 imes 10^{-4}$
		0·005 0·0025	$0.141 \\ 0.100$	$0.5502 \\ 0.5535$	$5.098 \\ 5.153$	8.0	4.9
		0.0025 0.00125	$0.100 \\ 0.071$	0.2222	5·153 5·166	7·0 6·8	5·0 5·3
		0.000625	0.020	0.5584	5.235	5.8	4·9
Glycerylphosphoric acid K_2	1.5	0.01	0.200	0.6296	6.452	3.5×10^{-7}	1.8×10 7
		0·005 0·0025	$0.141 \\ 0.100$	0.6330 0.6348	6·509 6·539	3·1 3·9	1·9 2·0
		0.00125	0.0707		6.601	2.5	$\bar{2}.0$
Pyrophosphoric acid (i) K_3	2.5	0.05	0.490	0.5922	5.797	16·0×10-7	0·95×10 '
		0.01	0.346	$0.6012 \\ 0.6066$	5·947 6·037	11.3	1.5
		$0.005 \\ 0.0025$	$0.245 \\ 0.173$	0.0000	6.173	9·2 6·7	$\frac{2 \cdot 2}{2 \cdot 5}$
		0.00125	0.123	0.6198	6.256	5.5	2.7
Pyrophosphoric acid (ii) K_4	3.5	0.05	0.583	0.7410	8.307	49×10-10	0.45×10^{-10}
		0.01	0.412	0.7520		32	1.2
		0·005 0·0025	$0.292 \\ 0.206$	0·7626 0·7673	8.664 8.744	22 18	2·1 3·4
		0.00125	0.146	0.7723		15	4.6

TABLE I.

* From the definition of Lewis and Randall, it follows that the ionic strengths of solutions of uni-bivalent, uni-tervalent, and uni-quadrivalent electrolytes are respectively equal to three, six, and ten times the molar concentrations, and that of a uni-univalent electrolyte is equal to the normality. The ionic strengths of the various mixtures were therefore derived as follows: Arginine and aspartic, acetic, and cacedylic acid mixtures : $\mu = [\text{salt}] = C$. Phthalic and glycerylphosphoric mixtures : $\mu = [\text{HA}'] + 3[\text{A''}] = 4C$, where C = [HA'] = 4C'.

Phthalic and giveryiphosphoric mixtures: $\mu = [\Pi A] + o_1 A = -70$, where C = [A']. Pyrophosphoric mixture (i): $\mu = 6[HP_2O_1'''] + 3[H_2P_2O_1''] + [Cl'] = 12C$, where $C = [HP_2O_1'''] = [HP_2O_1'''] = \frac{1}{2}[Cl']$. Pyrophosphoric mixture (ii): $\mu = 10[P_2O_1'''] + 6[HP_2O_1'''] + [Cl'] = 17C$, where $C = [P_2O_1'''] = [HP_2O_1'''] = [Cl']$. $+ In computing K_i$, the expression $p_{K_1} = p_H + \log ([salt] - [H']).([salt] + [H'])$ was used, the Henderson equation being inexact when $[H'] > 10^{-4}$.

(5) When $\sqrt{\mu} < A/2B$, $dp_{\rm H}/d\sqrt{\mu}$ has a negative value, the $p_{\rm H}$ value of the solution decreasing with increasing ionic strength. When $\sqrt{\mu} = A/2B$, $dp_{\rm H}/d\sqrt{\mu} = 0$, and, from (4), the corresponding value of the hydrogen-ion concentration, the lowest which can be obtained with a given buffer mixture, is given by $p_{\rm H} = p_k - p_k$ log [acid]/[salt] – $A^2/4B$. When $\sqrt{\mu} > A/2B$, the $p_{\rm H}$ value of the mixture increases with increasing ionic strength.

(6) The $\pi - \sqrt{\mu}$ graph is a straight line, the slope of which is equal to 2B.

The Thermodynamical Significance of the Dilution and Salt Errors.

Henderson's equation is derived on the assumptions that (1) the concentrations of hydrogen and hydroxyl ions are negligibly small compared with those of the total acid and base; (2) the salt is completely dissociated; (3) the law of mass action, as ordinarily defined in concentration terms, is obeyed. Between the $p_{\rm H}$ limits

TABLE II.

Aspartic acid mixture.

$[\mathbf{H}_{\mathbf{x}}\Delta] = [\mathbf{H}\Delta'] = 0.02.$											
Salt. N-KCl	А. 0•497	В. 0·402	C.c. added μ E.M.F. $p_{\rm H}$ $K \times 10^4$	0.0 0.020 0.4721 3.832 1.47	0.3 0.0485 0.4712 3.818 1.52	0+5 0+0667 0+4707 3+809 1+55	1.0 0.1091 0.4698 3.794 1.61	1·5 0·1478 0·4690 3·781 1·66	2·0 0·1834 0·4686 3·774 1·68	3.0 0.2462 0.4680 3.764 1.72	
N-NaCl	0.495	0.252	$ \begin{array}{c} n \\ k \\ \times 10^{4} \\ E.M.F. \\ p_{\rm H} \\ K \\ \times 10^{4} \\ k \\ \times 10^{4} \end{array} $	1·28 0·4721 3·832 1·47	1·24 0·4701 3·799 1·59	1·22 0·4699 3·796 1·60	1·22 0·4685 3·772 1·69	1·22 0·4675 3·756 1·75	1·22 0·4667 3·743 1·81	1·22 0·4656 3·724 1·89	
M/3-K ₂ SO ₄	0•499	0•485	$K \times 10^{-1}$ E.M.F. $p_{\rm H}$ $K \times 10^{4}$ $k \times 10^{4}$	1.27 0.4721 3.832 1.47 1.28	1.27 0.4718 3.827 1.49 1.22	1·24 0·4715 3·822 1·51 1·21	1·24 0·4712 3·818 1·52 1·18	1·23 0·4710 3·815 1·53 1·16	1·23 0·4705 3·806 1·56 1·17	1·24 0·4704 3·805 1·57 1·16	
M/3-BaCl ₂	0.498	0-057	$E.M.F.$ $p_{\rm H}$ $K \times 10^4$ $k \times 10^4$	0·4721 3·832 1·47 1·26	0·4695 3·788 1·63 1·27	0·4685 3·772 1·69 1·37	0·4661 3·733 1·85 1·28	0·4646 3·708 1·96 1·28	0·4634 3·688 2·05 1·29	0·4614 3·655 2·21 1·29	
M /4-MgSO	0•500	0.209	$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times 10^4\\ k\times 10^4\end{array}$	0·4721 3·832 1·47 1·26	0·4710 3·815 1·53 1·22	0·4700 3·797 1·60 1·22	0·4682 3·768 1·71 1·23	0·4670 3·748 1·79 1·23	0 ·4663 3·736 1·84 1·23	0 ·46 52 3·718 1·91 1·22	
			C.c. added µ	4 ∙0 0∙ 3 000	5·0 0·3467	6∙0 0•3875	7∙0 0∙4235	8∙0 0∙4556	9∙0 0∙4842	10.0 0.5100	
N-KCl	0.497	0•402	$E.M.F.$ $p_{\rm ff}$ $K \times 10^4$ $k \times 10^4$	0-4678 3-761 1-73 1-22	0·4677 3·759 1·74 1·22	0·4675 3·756 1·75 1·23	0·4674 3·755 1·76 1·23	0·4674 3·755 1·76 1·23	0·4673 3·753 1·77 1·25	0·4672 3·752 1·77 1·25	
N NaCl	0 ·495	0.252	$\begin{array}{c} \textbf{E.M.F.}\\ p_{\rm H}\\ K\times 10^{4}\\ k\times 10^{4} \end{array}$	0 ·4647 3·710 1·95 1·24	0•4642 3•701 1•99 1•24	0•4639 3•697 2•01 1•24	0•4636 3•691 2•04 1•24	0·4633 3·686 2·06 1·24	0·4630 3·681 2·08 1·25	0·4627 3·676 2·11 1·26	
$M/3 \ \mathrm{K_2SO_4}$	0.499	0.485	E.M.F. $p_{\rm H}$ $K imes 10^4$ $k imes 10^4$	0·4704 3·805 1·57 1·16	0·4703 3·803 1·57 1·18	0·470 3 3·803 1·57 1·19	0·4704 3·805 1·57 1·19	0·4703 3·803 1·57 1·21	$0.4702 \\ 3.801 \\ 1.58 \\ 1.22$	0·4701 3·799 1·59 1·23	
$M/3-\mathrm{BaCl}_{s}$	0•498	0.057	E.M.F. $p_{\rm H}$ $K imes 10^4$ $k imes 10^4$	0·4603 3·637 2·31 1·28	0·4592 3·618 2·41 1·28	0·4585 3·607 2·47 1·27	0·4577 3·593 2·55 1·28	0 ·4568 3·578 2·64 1·29	0·4567 3·576 2·66 1·27	0·4563 3·570 2·69 1·27	
M/4-MgSO ₄	0.200	0.209	$E.M.F. \ p_{ m H} \ K imes 10^4 \ k imes 10^4$		0·4639 3·697 2·01 1·21	0·4632 3·684 2·07 1·22	0·4626 3·674 2·12 1·23	0·4623 3·669 2·14 1·23	0-4618 3-661 2-18 1-24	0·4617 3·659 2·19 1·23	
	Mean value of $k_{\rm A} = 1.27 \times 10^{-4}$.										

4—10 the first assumption is obviously justified at ordinary concentrations. If the second and third assumptions were both valid, therefore, dilution and neutral salt errors would be non-existent. The fact that both errors are functions of the ionic strength rather than of concentration suggests that it is the third assumption which is at fault, and that the activity concept may offer a solution. The introduction of the activity correction into the Henderson equation leads to the expression

 $p_k = p_{\rm H} + \log \,[{\rm acid}]/[{\rm salt}] + \log f_a/f_s$. . (8)

in which f_a and f_s are the activity coefficients of the undissociated acid and of the salt anions, or of the acid anions of lower and higher valency, respectively, and $k = 10^{-p_k}$ is a true constant, the thermodynamic dissociation constant. Brønsted (*Trans. Faraday Soc.*,

TABLE III.

Acetic acid mixture.

				$[H\Lambda] =$	[A'] = 0	•01.				
Salt.	A.	В.	C.c. added	0.0 0.010	0·3 0·0388	0·5 0·0571	$1.0 \\ 0.100$	$1.5 \\ 0.1391$	$2.0 \\ 0.1750$	3∙0 0•2385
M/3-BaCla	а. 0.5	0·148	μ E.M .F.	0.5233	0.5204	0.5197	0.5177	0.5163	0.5153	0.5138
			р н К × 10 ⁸	4·684 2·07	4.635 2.32	4·624 2·38	4·591 2·56	4·567 2·71	$4.551 \\ 2.81$	4·527 2·97
			$k imes 10^{5}$	1.85	1.87	1.84	1.85	1.85	1.85	1.83
N-NaCl	0.2	0.295	Е.М.F. р _н	0·5233 4·684	0.5200 4.629	0·5190 4·613	0·5179 4·594	0·5170 4·580	0·5164 4·569	$0.5154 \\ 4.553$
			$K \times 10^{5}$	2.07	$2.35 \\ 1.92$	$2.44 \\ 1.92$	$2.55 \\ 1.90$	$2.63 \\ 1.88$	$2.70 \\ 1.88$	$2.80 \\ 1.87$
M/3-K,SO,	0.5	0.411	k × 10 ⁵ E.M.F.	1.86 0.5233	1·92 0·5213	0.5210	0.5200	0.5192	0.5187	0.5183
			$\stackrel{p_{\rm H}}{K} \times 10^{5}$	4.684 2.07	$4.650 \\ 2.24$	$4.646 \\ 2.26$	4·629 2·35	4·616 2·42	4·608 2·47	$4.601 \\ 2.51$
			$k \times 10^{5}$	1.86	1.85	1.81	1.80	1.80	1.80	1.79
N-KCl	0.5	0.348	E.M.F.	$0.5233 \\ 4.684$	0·5210 4·646	0·5205 4·637	0·5194 4·619	0·5188 4·610	$0.5182 \\ 4.599$	$0.5176 \\ 4.588$
			$\stackrel{p_{\rm H}}{K} \times 10^{\rm s}$	2.07	$2 \cdot 26$	2.31	2.40	$2 \cdot 46$	2.52	2.58
M/4-MgSO	0.5	0.160	$k \times 10^{4}$ E.M.F.	1.86 0.5233	$1.86 \\ 0.5200$	1.83 0.5192	1∙81 0∙5179	1·78 0·5170	1·79 0·5160	1·78 0·5145
14/1-515504	00	0.100	$p_{\mathbf{H}}$	4.684	4.629	4.616	4 ·594	4.580	4.563	4.538 2.90
			$rac{K imes 10^5}{k imes 10^5}$	$2.07 \\ 1.85$	$2.35 \\ 1.90$	$2.42 \\ 1.88$	$2.55 \\ 1.84$	$2.63 \\ 1.80$	$2.74 \\ 1.80$	1.80
			C.c. added	4.0	5.0	6.0	7.0	\$ ∙0	9·0	10.0
36 10 70 - (1)	0.5	0.149	μ Γ K Γ	0.2928 0.5127	0·3401 0·5119	0.3813 0.5110	0.4176	0·4501 0·5100	0.4790	0.5050
$M/3-\text{BaGl}_{s}$	0.2	0.148	Е.М.F. Рн	4.508	4.494	4.480	0·5105 4·471	4.463	0•5097 4•458	0·5093 4·451
			$rac{K}{k} imes 10^{s}$ $k imes 10^{s}$	$3.11 \\ 1.84$	$3.21 \\ 1.84$	$3.31 \\ 1.85$	3-38 1-85	3·44 1·85	3·48 1·85	3·54 1·85
N-NaCl	0.5	0.295	E.M.F.	0.5148	0.5142	0.5138	0.5135	0.5130	100	100
			$\stackrel{p_{\rm H}}{K} imes 10^5$	4·543 2·86	$4.533 \\ 2.93$	4·527 2·97	4·522 3·01	4·513 3·07		
			$k \times 10^{5}$	1.87	1.88	1.89	1.89	1.92		
M/3-K ₂ SO ₄	0.2	0•411	Е.М.F. Рн	0·5180 4·596	0·5179 4·594	0·5178 4·593	0·5176 4·588	0·5176 4·588	$0.5175 \\ 4.587$	0•5175 4•587
			$\tilde{K} \times 10^{3}$ $k \times 10^{5}$	$2.54 \\ 1.79$	$2.55 \\ 1.80$	$2.55 \\ 1.80$	2.58 1.80	$2.58 \\ 1.82$	$2.59 \\ 1.84$	$2.59 \\ 1.84$
N-KCl	0.5	0.348	E.M.F.	0.5172	0.5170	0.5168	0.5156	0.5155	0.5153	1·3± 0·5153
			$\stackrel{p_{\rm H}}{K} \times 10^{5}$	$4.582 \\ 2.62$	4.580 2.63	4.57 6 2.66	$4.556 \\ 2.78$	$4.555 \\ 2.79$	4·551 2·81	$\frac{4.551}{2.81}$
			$k \times 10^{5}$	1.77	1.76	1.77	1.84	1.85	1.86	1.86
M/4-MgSO ₄	0.2	0.160	E.M.F.	$0.5134 \\ 4.520$	$0.5125 \\ 4.505$	0·5118 4·493	$0.5110 \\ 4.480$	0·5104 4·469	0·5098 4·460	0·5093 4·451
			$\stackrel{p_{\rm H}}{K} \times 10^5$	3.02	3.13	3.21	3.31	3.40	3.47	3.54
			$k \times 10^{8}$	1.80 m walue c	1.81 of <i>k</i> 1.9	1.82 M × 10-5	1.83	1.85	1.87	1.88

Mean value of $k = 1.84 \times 10^{-5}$.

1927, 23, 418) puts the Debye-Hückel (*Physikal. Z.*, 1923, 24, 185) equation for the activity coefficient f of an ion of valency z in the form $-\log f = 0.5z^2\sqrt{\mu} + b\mu$. For the *n*-th stage in the dissociation of a weak acid this gives $-\log f_a = 0.5(n-1)^2\sqrt{\mu} + b'\mu$ and $-\log f_s = 0.5n^2\sqrt{\mu} + b''\mu$, or $\log f_a/f_s = (n-0.5)\sqrt{\mu} - B\mu$, where B = b' - b''.

Equations (8) and (4), therefore, are identical and the data of Tables I—IX constitute an experimental verification of the Debye– Hückel theory.

For mono- and di-basic acids, the numerical values of the proportionality constant A are in excellent agreement with those derived thermodynamically from the Debye-Hückel theory, *viz.*, 0.5 and 1.5, respectively, but for acids of higher valency there is

TABLE IV.

Cacodylic acid mixture.

$[\mathbf{H}\mathbf{A}] = [\mathbf{A}'] = 0.04.$										
Salt.	A .	В.	C.c. added µ	0·0 0·0400	0·3 0·068	0∙5 0∙0857	1.0 0.1273	$1.5 \\ 0.1652$	$2.0 \\ 0.200$	3·0 0·2616
N-NaCl	0.5	0.2259	E.M.F. $p_{\rm H}$ $K \times 10^{7}$ $k \times 10^{7}$	0·6116 6·153 7·0 5·7	0.6100 6.127 7.5 5.7	0·6095 6·119 7·6 5·7	0.6089 6.108 7.8 5.6	0.6080 6.09 4 8.1 5.6	0·6073 6·081 8·3 5·6	0.6065 6.068 8.6 5.6
M/3-K ₂ SO4	0.2	0.352	E.M.F. $p_{\mathbf{H}}$ $K imes 10^7$ $k imes 10^7$	0.6116 6.153 7.0 5.8	0.6103 6.131 7.4 5.8	0.6100 6.127 7.5 5.7	0.6094 6.116 7.7 5.6	0.6092 6.113 7.7 5.5	0+6083 6+098 8+0 5+6	0.6079 6.091 8.1 5.6
M/3-BaCl ₂	0.2	0.153	E.M.F. $p_{\rm H}$ $K \times 10^{7}$ $k \times 10^{7}$	0·6116 6·153 7·0 5·7	0.6101 6.128 7.4 5.6	0·6094 6·116 7·7 5·6	0.6079 6.091 8.1 5.6	0.6068 6.073 8.5 5.6	0.6061 6.061 8.7 5.6	0·6047 6·039 9·1 5·6
M/4-MgSO4	0.2	0.119	$E.M.F.$ $p_{\rm H}$ $K \times 10^{7}$ $k \times 10^{7}$	0·6116 6·153 7·() 5·6	$0.6090 \\ 6.110 \\ 7.8 \\ 5.8$	0.6082 6.096 8.0 5.8	0.6067 6.071 8.5 5.8	0.6059 6.057 8.8 5.8	0.6050 6.043 9.1 5.7	0·6033 6·015 9·7 5·8
			C.c. added #	4∙0 0•3143	5∙0 0• 3601	6·0 0· 4 00	7∙0 0• 43 52	8-0 0-4667	9∙0 0•4948	10·0 0·5200
N-NaCl	6.2	0-259	$E.M.F. p_{H} K \times 10^{7} k \times 10^{7}$	0.6055 6.052 8.9 5.6	0.6050 6.043 9.1 5.6	0.6048 6.039 9.1 5.6	0.6043 6.032 9.3 5.6	0.6040 6.027 9.4 5.7	0.6038 6.023 9.5 5.7	0-6036 6-020 9-6 5-7
M/3-K ₂ SO ₄	0.2	0.352	E.M.F. $p_{\rm H}$ $K \times 10^{7}$ $k \times 10^{7}$	0.6079 6.091 8.1 5.5	0.6078 6.089 8.1 5.5	0.6070 6.077 8.4 5.6	0.6063 6.064 8.6 5.7	0.6062 6.063 8.7 5.7	0.6061 6.061 8.7 5.8	0+6060 6+060 8+7 5+8
$M/3 ext{-BaCl}_2$	0.2	0· 153	$\begin{array}{c} E.M.F.\\ p_{\mathbf{H}}\\ K\times 10^{7}\\ k\times 10^{7} \end{array}$	0.6037 6.022 9.5 5.6	0.6028 6.006 9.9 5.6	$0.6022 \\ 5.996 \\ 10.1 \\ 5.6$	$0.6015 \\ 5.985 \\ 10.4 \\ 5.6$	0.6012 5.980 10.5 5.6	0.6009 5.974 10.6 5.6	0·6004 5·968 10·8 5·6
M/4-MgSO ₄	0.2	0· 119	$E.M.F. p_{ m H} \ K imes 10^7 \ k imes 10^7$	0.6025 6.002 10.0 5.7	$0.6011 \\ 5.978 \\ 10.5 \\ 5.8$	0.6008 5.973 10.6 5.7	0.6002 5.964 10.9 5.7	$0.5995 \\ 5.953 \\ 11.1 \\ 5.8$	0·5988 5·940 11·5 5·8	0.5986 5.936 11.6 5.8
			Mea	n value o	of $k = 5 \cdot 6$	36×10^{-3}	7.			

only rough correspondence between the two values. Moreover, the above considerations apply only to weak electrolytes, the dissociation constants of which lie within the limits 10^{-4} and 10^{-9} or 10^{-10} . In any attempt to formulate the dilution errors of strong electrolytes, or of the strongly hydrolysed salts of very weak electrolytes, the effects of changing concentration, as well as of changing ionic strength, must be taken into account. For such electrolytes, the dilution error may be provisionally formulated as $\pi' = \Delta p_{\rm H}/\Delta C$, and determined experimentally.

EXPERIMENTAL.

The hydrogen electrode was used in conjunction with a saturated calomel half-cell, and with saturated potassium chloride solution as the junction liquid. The temperature was maintained at 30° by circulating water from an electrically controlled thermostat, by means of an "Albany" pump, through jackets surrounding the two electrode vessels.

TABLE V.

Arginine mixture.

				[BOH] =	: [B*] =	0.00543.				
Salt. N-KCl	А. 0·5	B. 0·408	C.c. added μ E.M.F. $p_{\rm H}$ $K \times 10^6$ $k \times 10^6$	0.00545 0.7629 8.569 7.0	0.3 0.0344 0.7672 8.640 8.2	$0.5 \\ 0.0528 \\ 0.7681 \\ 8.654 \\ 8.5 \\ 0.7681 \\ 8.5 \\ 0.7681 \\ 0.$	1.0 0.0959 0.7690 8.670 8.8	1.5 0.1351 0.7695 8.678 9.0	2.0 0.1712 0.7698 8.684 9.1	3.0 0.2350 0.7705 8.696 9.4
M/3-K ₂ SO ₄	0.5	0.371	$E.M.F.$ $p_{\rm H}$ $K \times 10^{6}$ $k \times 10^{6}$	6·4 0·7629 8·569 7·0 6·4	6·9 0·7683 8·658 8·6 7·1	6·9 0·7693 8·674 8·9 7·1	6·8 0·7707 8·698 9·4 7·1	6·7 0·7717 8·714 9·8 7·2	6.6 0.7726 8.730 10.1 7.3	6.7 0.7730 8.738 10.3 7.2
N-NaOl	0.2	0•466	$E.M.F. p_{\rm H} K imes 10^{\circ} k imes 10^{\circ}$	0·7629 8·569 7·0 6·5	0·7646 8·596 7·4 6·2	0.7656 8.614 7.8 6.3	0.7660 8.620 7.9 6.1	0.7667 8.632 8.1 6.1	0.7670 8.638 8.2 6.1	0.7674 8.644 8.3 6.1
M/4-MgSO ₄			Е.М.Г. Рн	0·7629 8·569	0·7641 8·588	0·7643 8·590	0·7638 8·582	0·7626 8·565	$0.7615 \\ 8.545$	0·7593 8·507
M/3-BaCl ₃			Е.М.F. Рн	0·7629 8·569	0·7631 8·572	0·7634 8·576	0·7633 8·574	0·7628 8·567	0·7619 8·553	0·7597 8·515
			C.c. added µ	4∙0 0∙2896	5∙0 0∙3370	6·0 0·3784	7· 0 0· 4149	8·0 0·4475	9∙0 0∙4766	10-0 0-5027
N-KCl	0.2	0-408	E.M.F. $\stackrel{?}{H}_{K} \times 10^{6}$ $k \times 10^{6}$	0·7708 8·700 9·1 6·7	0.7708 8.700 9.4 6.6	0.7710 8.704 9.5 6.7	0.7710 8.704 9.5 6.7	0.7710 8.704 9.5 6.7	0.7710 8.704 9.5 6.7	0.7710 8.704 9.5 6.7
M/3- K₂SO₄	0•5	0· 371	$E.M.F. p_{\rm H} K imes 10^6 k imes 10^6$	0·7735 8·746 10·5 7·2	$0.7736 \\ 8.748 \\ 10.5 \\ 7.2$	0·7734 8·744 10·5 7·1	0·7730 8·738 10·3 7·0	0·7730 8·738 10·3 7·0	0·7729 8·736 10·3 7·0	0.7731 8.73 <u>8</u> 10.3 7.0
N-NaCl	0.5	0.466	$E.M.F. p_{\rm H} \ K imes 10^6 \ k imes 10^6$	0+7672 8+640 8+2 6+0	0·7678 8·650 8·4 6·2	0·7682 8·656 8·5 6·3	0·7675 8·646 8·3 6·2	0·7677 8·650 8·4 6·3	0·7672 8·640 8·2 6·2	0·7672 8·640 8·2 6·2
M/4 MgSO ₄			E.M.F. Pn	$0.7572 \\ 8.472$		0·7538 8·418	0·7520 8·387	0·7503 8·358	0·7485 8·318	0•7468 8•301
M/3·BaCl ₂			Е.М.Г. Рн	0·7566 8·465	0·7535 8·412	0·7521 8·389	$0.7510 \\ 8.371$	0·7502 8·356	0·7496 8·347	0·7495 8·345
	Mean value of $k_{B_2} = 6.64 \times 10^{-6}$.									

(1) Dilution Experiments.

In these experiments (Table I) each solution was prepared by mixing 50 c.c. of the previous dilution with an equal volume of water, the same pipette being used.

The values of k, the thermodynamic dissociation constant, given in the last column of Table I, are those deduced from the limiting equation (1). At the highest dilutions studied (about M/1,000), the experimental error is necessarily somewhat large; it may be claimed, nevertheless, that the Debye-Hückel theory satisfactorily describes the hydrogen-ion relationships of mono- and di-basic mixtures over a wide range of concentration. For mixtures prepared from acids of higher valency, such as the pyrophosphate mixtures, the lack of constancy of k indicates that the use of the Debye-Hückel equation is justifiable only as a first approximation.

(2) Neutral-salt Experiments.

To 10 c.c. of the mixture under examination, successive small increments of N-potassium chloride, N-sodium chloride, $M/3-3 \ge 2$

TABLE VI.

Phthalic acid mixture.

				$[\mathbf{H}\mathbf{A}'] = \{$	$\mathbf{A''} = 0.0$	1.			
Salt. N-NaCl	▲ . 1•5	₿. 0·759	C.c. added μ E.M.F. $p_{\rm H}$ $K_2 \times 10^6$ $k_2 \times 10^6$	0.5 0.0857 0.5414 4.952 11.2 4.7	1.0 0.1273 0.5380 4.895 12.7 4.7	1.5 0.1652 0.5353 4.851 14.1 4.6	2.0 0.2000 0.5331 4.814 15.4 4.6	3.0 0.2616 0.5302 4.766 17.1 4.6	4.0 0.3143 0.5280 4.730 18.6 4.7
M/3-K ₂ SO ₄	1.5	0.961	$E.M.F.$ $p_{\rm H}$ $K_2 \times 10^6$ $k_2 \times 10^6$	0-5426 4-972 10-7 4-7	0.5400 4.928 11.8 4.6	0·5378 4·891 12·9 4·6	0·5363 4·867 13·6 4·5	0·5345 4·838 14·5 4·4	0·5330 4·818 15·4 4·4
M-BaCl ₂	1.5	0.435	$E.M.F.$ $p_{\rm H}$ $K_2 \times 10^6$ $k_2 \times 10^6$	0.5337 4.823 15.0 5.9	0.5248 4.677 21.0 6.9	0·5201 4·597 25·3 7·3	0·5162 4·533 29·3 7·6	0·5116 4·457 34·9 7·7	0·5086 4·407 39·2 7·8
N-KCl	1.5	0.845	$E.M.F.$ $p_{\rm H}$ $K_2 \times 10^6$ $k_2 \times 10^6$	0.5417 4.957 11.0 5.2	0.5389 4.910 12.3 4.6	0·5365 4·871 13·5 4·6	0.5340 4.828 14.9 4.7	0•5315 4•787 16·3 4•6	0•5294 4•752 17•7 4•7
<i>M</i> /4-MgSO₄	1.5	0.466	E.M.F. $p_{\rm H}$ $K_{2} \times 10^{6}$ $k_{2} \times 10^{6}$	$0.5373 \\ 4.884 \\ 13.1 \\ 5.2$	$0.5326 \\ 4.806 \\ 15.6 \\ 5.2$	0.5290 4.745 18.0 5.3	0.5263 4.700 20.0 5.3	0.5225 4.637 23.1 5.2	0·5199 4·594 25·5 5·2
			C.c. added µ	5·0 0·3601	6·0 0·4000	7·0 0·4352	8·0 0·4667	9·0 0·4948	$10.0 \\ 0.5200$
N-NaCl	1.5	0.759	$E.M.F.$ $p_{\rm H}$ $K_2 \times 10^{\circ}$ $k_3 \times 10^{\circ}$	0.5266 [4.706 19.7 4.6	0.5256 4.689 20.5 4.6	0.5246 4.673 21.2 4.6	0.5232 4.649 22.4 4-8	0.5227 4.640 22.9 4.8	0.5220 4.629 23.5 4.8
<i>M</i> /3-K ₂ SO ₄	1.2	0.961	$E.M.F. p_{\rm H} \ K_2 \times 10^6 \ k_2 \times 10^6$	0.5320 4.796 16.0 4.5	0·5310 4·779 16·6 4·5	$0.5306 \\ 4.773 \\ 16.9 \\ 4.5$	0.5300 4.762 17.3 4.6	0.5292 4.749 17.8 4.7	0•5290 4•745 18•0 4•7
M/3-BaCl ₂	1.5	0.435	E.M.F. $p_{\rm H}$ $K_{\rm S} \times 10^{6}$ $k_{\rm 2} \times 10^{6}$	0·5064 4·367 42·8 7·8	0·5049 4·344 45·3 7·6	0·5033 4·318 48·1 7·6	0.5020 4.296 50.6 7.6	$0.5012 \\ 4.284 \\ 52.0 \\ 7.5$	0·5010 4·280 52·5 7·3
N-KCl	1.2	0.845	E.M.F. $p_{\rm H}$ $K_2 \times 10^6$ $k_2 \times 10^6$	0.5280 4.730 18.6 4.7	0·5277 4·724 18·9 4·6	0·5270 4·713 19·4 4·6	0·5264 4·702 19·9 4·6	0·5259 4·693 20·3 4·7	$0.5251 \\ 4.680 \\ 20.9 \\ 4.8$
M/4-MgSO ₄	1.5	0•466	E.M.F. $p_{\rm H}$ $K_2 \times 10^6$ $k_2 \times 10^6$	0·5180 4·563 27·4 5·1	0·5164 4·536 29·1 5·0	0.5150 4.513 30.7 5.0	0.5139 4.494 32.1 5.0	0·5130 4·480 33·1 4·9	0·5121 4·465 34·3 5·0
			Mean	u value of i	$k_{1} = 4.65$	× 10			

potassium sulphate, M/3-barium chloride, or M/4-magnesium sulphate were added, and the E.M.F. at each stage was determined. The salts were Kahlbaum's "for analysis, with certificate of guarantee."

The values of k given in Tables II—IX were computed by means of the expression $p_k = p_{\rm H} + A\sqrt{\mu} - B\mu$. In general, k is constant within the limits of experimental error, *i.e.*, throughout the range of salt concentrations studied (0·0—0·5N), the activation effect is in accordance with the Debye–Hückel theory. Apparent deviations are met with (a) in strongly acid mixtures in the presence of potassium and magnesium sulphates, (b) in slightly alkaline mixtures on the addition of magnesium sulphate and barium chloride. It is probable that in these cases we are dealing, not with a simple

TABLE VII.

Glycerylphosphoric acid mixture.

[HA'] = [A''] = 0.01.										
Salt.	A.	В.	C.c. added µ	0·0 0·040	0 ·3 0 ·06 80	0·5 0·0857	1.0 0.1273	$1.5 \\ 0.1652$	$2.0 \\ 0.200$	3.0 0.2616
N-KCl	1.5	0.837	E.M.F.	0.6296	0.6258	0.6240	0.6206	0.6185	0.6170	0.6139
			$K^{p_{\mathbf{H}}} \times 10^{7}$	6•452 3•5	6∙389 4∙1	6·359 4·4	6 ·3 04 5·0	6·268 5·4	6·244 ∂·7	6·192 6·4
N-NaCl	1.5	0.629	$k \times 10^7$ E.M.F.	1·8 0•6296	1∙9 0•6254	1∙9 0•6238	1·9 0·6204	1·8 0·6174	$1.8 \\ 0.6149$	1·8 0·6117
20-19801	1.9	0.029	$p_{\mathbf{H}}$	6.452	6.383	6.357	6.300	6.250	6.209	6.155
			$\begin{array}{c} K imes 10^{ 7} \ k imes 10^{ 7} \end{array}$	$3.5 \\ 1.8$	4·1 1•8	4·4 1·8	$5.0 \\ 1.8$	5·6 1·8	$6.2 \\ 1.8$	7·0 1·7
M/3-K ₂ SO ₄	1.5	0.965	E.M.F.	0.6296 6.452	0-6260 6-392	0.6250 6.375	0.6225 6.334	0.6204 6.299	$0.6194 \\ 6.282$	$0.6170 \\ 6.241$
			$\stackrel{p_{\rm H}}{K} \times 10^7$	3.5	4·1	4.2	4.6	5.0	$5 \cdot 2$	5.7
M/3-BaCl.	1.5	0.256	$k \times 10^7$ E.M.F.	1·8 0·6296	1∙9 0•6190	1·8 0•6149	1.8 0.6095	1.8 0.6044	1.7 0.6008	$1.8 \\ 0.5962$
			${}^{p_{\rm H}}_{K \times 10^7}$	6·452 3·5	$6.275 \\ 5.3$	$6.207 \\ 6.2$	6·119 7·6	6.033 9.3	5·973 10·6	5·896 12·7
			$k \times 10^7$	1.8	2.2	2.4	2.4	2.5	2.6	2.5
M/4-MgSO ₄	1.5	0.288	E.M.F.	0.6296 6.452	0.6180 6.260	0.6144 6.200	0.6062 6.064	0.6010 5.977	0∙5985 5∙936	$0.5935 \\ 3.852$
			$\begin{array}{c} \mathbf{K} \times 10^{7} \\ \mathbf{k} \times 10^{7} \end{array}$	$3.5 \\ 1.8$	5·5 2·3	6-3 2-4	8·6 2·7	$10.5 \\ 2.9$	11.6 2.8	14·1 2·8
			C.c. added	4 ·0	5 •0	6.0	7.0	8.0	9-i)	10.0
			μ.	0.3143	0.3601	0.4000	0.4352	0.4667	0.4948	0.5200
N-KCl	1.5	0 ·837	E.M.F.	0.6120 6.159	0.6109 6.142	0.6099 6.126	0.6090 6.110	0.6083 6.099	0.6078 6.091	0.6072 6.081
N-KCl	1.5	0 ·837	E.M.F. $p_{\rm H}$ $K \times 10^7$	0.6120 6.159 6.9	0.6109 6.142 7.2	0.6099 6.126 7.5	0.6090 6.110 7.8	0+6083 6+099 8+0	0.6078 6.091 8.1	0.6072 6.081 8.3
N-KCl N-NaCl	1.5 1.5	0.8 3 7	E.M.F. PH	0.6120 6.159 6.9 1.8 0.6089	0.6109 6.142 7.2 1.8 0.6072	0.6099 6.126 7.5 1.8 0.6056	0.6090 6.110 7.8 1.8 0.6043	0.6083 6.099 8.0 1.8 0.6032	0.6078 6.091 8.1 1.8 0.6028	0.6072 6.081 8.3 1.9 0.6020
			$E.M.F.$ $p_{\rm H}$ $K \times 10^{7}$ $k \times 10^{7}$	0.6120 6.159 6.9 1.8	0.6109 6.142 7.2 1.8	0.6099 6.126 7.5 1.8	0.6090 6.110 7.8 1.8	0.6083 6.099 8.0 1.8	0.6078 6.091 8.1 1.8	0.6072 6.081 8.3 1.9
N-NaCl	1•5	0.629	$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times 10^{7}\\ k\times 10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times 10^{7}\\ k\times 10^{7} \end{array}$	0.6120 6.159 6.9 1.8 0.6089 6.108 7.8 1.8	0.6109 6.142 7.2 1.8 0.6072 6.080 8.3 1.8	0.6099 6.126 7.5 1.8 0.6056 6.053 8.9 1.8	0.6090 6.110 7.8 1.8 0.6043 6.032 9.3 1.8	0.6083 6.099 8.0 1.8 0.6032 6.013 9.7 1.8	0.6078 6.091 8.1 1.8 0.6028 6.006 9.9 1.8	0.6072 6.081 8.3 1.9 0.6020 5.994 10.1 1.8
			$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times 10^7\\ k\times 10^7\\ E.M.F.\\ p_{\rm H}\\ K\times 10^7\\ k\times 10^7\\ k. \\ F.M.F.\\ p_{\rm H}\end{array}$	0.6120 6.159 6.9 1.8 0.6089 6.108 7.8 1.8 0.6154 6.216	0.6109 6.142 7.2 1.8 0.6072 6.080 8.3 1.8 0.6142 6.195	0.6099 6.126 7.5 1.8 0.6056 6.053 8.9 1.8 0.6136 6.186	0.6090 6.110 7.8 1.8 0.6043 6.032 9.3 1.8 0.6129 6.175	0.6083 6.099 8.0 1.8 0.6032 6.013 9.7 1.8 0.6128 6.173	0.6078 6.091 8.1 1.8 0.6028 6.006 9.9 1.8 0.6122 6.163	$\begin{array}{c} 0.6072\\ 6.081\\ 8.3\\ 1.9\\ 0.6020\\ 5.994\\ 10.1\\ 1.8\\ 0.6115\\ 6.152\\ \end{array}$
N-NaCl	1•5	0.629	$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times 10^7\\ k\times 10^7\\ E.M.F.\\ p_{\rm H}\\ K\times 10^7\\ k\times 10^7\\ E.M.F. \end{array}$	0.6120 6.159 6.9 1.8 0.6089 6.108 7.8 1.8 0.6154	0.6109 6.142 7.2 1.8 0.6072 6.080 8.3 1.8 0.6142	0.6099 6.126 7.5 1.8 0.6056 6.053 8.9 1.8 0.6136	0.6090 6.110 7.8 1.8 0.6043 6.032 9.3 1.8 0.6129	0.6083 6.099 8.0 1.8 0.6032 6.013 9.7 1.8 0.6128	0.6078 6.091 8.1 1.8 0.6028 6.006 9.9 1.8 0.6122	0.6072 6.081 8.3 1.9 0.6020 5.994 10.1 1.8 0.6115
N-NaCl	1•5	0.629	$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times10^7\\ k\times10^7\\ E.M.F.\\ p_{\rm H}\\ K\times10^7\\ E.M.F.\\ p_{\rm H}\\ K\times10^7\\ E.M.F.\\ p_{\rm H}\\ K\times10^7\\ E.M.F. \end{array}$	0.6120 6.159 6.9 1.8 0.6089 6.108 7.8 1.8 0.6154 6.216 6.1 1.8 0.5921	0.6109 6.142 7.2 1.8 0.6072 6.080 8.3 1.8 0.6142 6.195 6.4 1.8 0.5903	0.6099 6.126 7.5 1.8 0.6056 6.053 8.9 1.8 0.6136 6.136 6.136 6.5 1.8 0.5881	0.6090 6.110 7.8 1.8 0.6043 6.032 9.3 1.8 0.6129 6.175 6.7 1.8 0.5855	0.6083 6.099 8.0 1.8 0.6032 6.013 9.7 1.8 0.6128 6.173 6.7 1.8 0.5850	$\begin{array}{c} 0.6078\\ 6.091\\ 8.1\\ 1.8\\ 0.6028\\ 6.006\\ 9.9\\ 1.8\\ 0.6122\\ 6.163\\ 6.9\\ 1.8\\ 0.5840 \end{array}$	$\begin{array}{c} 0.6072\\ 6.081\\ 8.3\\ 1.9\\ 0.6020\\ 5.994\\ 10.1\\ 1.8\\ 0.6115\\ 6.152\\ 7.0\\ 1.8\\ 0.5829 \end{array}$
N-NaCl M/3-K₂SO₄	1•5 1•5	0-629 0-965	$ \begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ k\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ \end{array} $	$\begin{array}{c} 0.6120\\ 6.159\\ 6.9\\ 1.8\\ 0.6089\\ 6.108\\ 7.8\\ 1.8\\ 0.6154\\ 6.216\\ 6.1\\ 1.8\\ 0.5921\\ 5.829\\ 14.8\end{array}$	$\begin{array}{c} 0.6109\\ 6.142\\ 7.2\\ 1.8\\ 0.6072\\ 6.080\\ 8.3\\ 1.8\\ 0.6142\\ 6.195\\ 6.4\\ 1.8\\ 0.5903\\ 5.799\\ 15.9\end{array}$	$\begin{array}{c} 0.6099\\ 6.126\\ 7.5\\ 1.8\\ 0.6056\\ 6.053\\ 8.9\\ 1.8\\ 0.6136\\ 6.186\\ 6.5\\ 1.8\\ 0.5881\\ 5.762\\ 1.7.3\end{array}$	0.6090 6.110 7.8 1.8 0.6043 6.032 9.3 1.8 0.6129 6.175 6.7 1.8 0.5855 5.719 19.1	0.6083 6.099 8.0 1.8 0.6032 6.013 9.7 1.8 0.6128 6.173 6.7 1.8 0.5850 5.711 19.5	$\begin{array}{c} 0.6078\\ 6.091\\ 8.1\\ 1.8\\ 0.6028\\ 6.006\\ 9.9\\ 1.8\\ 0.6122\\ 6.163\\ 6.9\\ 1.8\\ 0.5840\\ 5.694\\ 20.2\end{array}$	$\begin{array}{c} 0.6072\\ 6.081\\ 8.3\\ 1.9\\ 0.6020\\ 5.994\\ 10.1\\ 1.8\\ 0.6115\\ 6.152\\ 7.0\\ 1.8\\ 0.5829\\ 5.676\\ 21.1\end{array}$
N-NaCl M/3-K ₂ SO ₄ M/3-BaCl ₂	1-5 1-5 1-5	0-629 0-965	$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times10^7\\ K\times10^7\\ E.M.F.\\ p_{\rm H}\\ K\times10^7\\ k\times10^7\\ E.M.F.\\ p_{\rm H}\\ K\times10^7\\ k\times10^7\\ E.M.F.\\ p_{\rm H}\\ p_{\rm H}\end{array}$	$\begin{array}{c} 0.6120\\ 6.159\\ 6.9\\ 1.8\\ 0.6089\\ 6.108\\ 7.8\\ 1.8\\ 0.6154\\ 6.216\\ 6.1\\ 1.8\\ 0.5921\\ 5.829\end{array}$	0.6109 6.142 7.2 1.8 0.6072 6.080 8.3 1.8 0.6142 6.195 6.4 1.8 0.5903 5.799	0.6099 6.126 7.5 1.8 0.6056 6.053 8.9 1.8 0.6136 6.186 6.5 1.8 0.5881 5.762	$\begin{array}{c} 0.6090\\ 6.110\\ 7.8\\ 1.8\\ 0.6043\\ 6.032\\ 9.3\\ 1.8\\ 0.6129\\ 6.175\\ 6.7\\ 1.8\\ 0.5855\\ 5.719\end{array}$	0.6083 6.099 8.0 1.8 0.6032 6.013 9.7 1.8 0.6128 6.173 6.7 1.8 0.5850 5.711	0.6078 6.091 8.1 1.8 0.6028 6.006 9.9 1.8 0.6122 6.163 6.9 1.8 0.55340 5.694	$\begin{array}{c} 0.6072\\ 6.081\\ 8.3\\ 1.9\\ 0.6020\\ 5.994\\ 10.1\\ 1.8\\ 0.6115\\ 6.152\\ 7.0\\ 1.8\\ 0.5829\\ 5.676\end{array}$
N-NaCl M/3-K₂SO₄	1-5 1-5 1-5	0-629 0-965 0-256	$ \begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ k\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ \end{array} $	$\begin{array}{c} 0.6120\\ 6.159\\ 6.9\\ 1.8\\ 0.6089\\ 6.108\\ 7.8\\ 1.8\\ 0.6154\\ 6.216\\ 6.1\\ 1.8\\ 0.5921\\ 5.829\\ 14.8\\ 2.6\\ 0.5902\\ 5.798\\ \end{array}$	$\begin{array}{c} 0.6109\\ 6.142\\ 7.2\\ 1.8\\ 0.6072\\ 6.080\\ 8.3\\ 1.8\\ 0.6142\\ 6.195\\ 6.4\\ 1.8\\ 0.5903\\ 5.799\\ 15.9\\ 2.5\\ 0.5880\\ 5.761\end{array}$	$\begin{array}{c} 0.6099\\ 6.126\\ 7.5\\ 1.8\\ 0.6056\\ 6.053\\ 8.9\\ 1.8\\ 0.6136\\ 6.5\\ 1.8\\ 0.5881\\ 5.762\\ 17.3\\ 2.5\\ 0.5882\\ 5.731\end{array}$	$\begin{array}{c} 0.6090\\ 6.110\\ 7.8\\ 0.6043\\ 6.032\\ 9.3\\ 1.8\\ 0.6129\\ 6.175\\ 6.7\\ 1.8\\ 0.5855\\ 5.719\\ 19.1\\ 2.5\\ 0.5855\\ 5.703\\ \end{array}$	$\begin{array}{c} 0.6083\\ 6.099\\ 8.0\\ 1.8\\ 0.6032\\ 6.013\\ 9.7\\ 1.8\\ 0.6128\\ 6.173\\ 6.7\\ 1.8\\ 0.5850\\ 5.711\\ 19.5\\ 2.4\\ 0.5834\\ 5.684\\ \end{array}$	$\begin{array}{c} 0.6078\\ 6.091\\ 8.1\\ 1.8\\ 0.6028\\ 6.006\\ 9.9\\ 1.8\\ 0.6122\\ 6.163\\ 6.9\\ 1.3\\ 0.5840\\ 20.2\\ 2.4\\ 0.5825\\ 5.669\end{array}$	$\begin{array}{c} 0.6072\\ 6.081\\ 8.3\\ 1.9\\ 0.6020\\ 5.994\\ 10.1\\ 1.8\\ 0.6115\\ 6.152\\ 7.0\\ 1.8\\ 0.5829\\ 5.676\\ 21.1\\ 2.4\\ 0.5815\\ 5.653\end{array}$
N-NaCl M/3-K ₂ SO ₄ M/3-BaCl ₂	1-5 1-5 1-5	0-629 0-965 0-256	$ \begin{array}{c} E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ E.M.F.\\ p_{\rm H}\\ K\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ k\times10^{7}\\ \end{array} $	$\begin{array}{c} 0.6120\\ 6.159\\ 6.9\\ 1.8\\ 0.6089\\ 6.108\\ 7.8\\ 0.6154\\ 6.216\\ 6.1\\ 1.8\\ 0.6154\\ 6.216\\ 6.1\\ 1.8\\ 0.5921\\ 1.8\\ 2.6\\ (0.5902\\ \end{array}$	$\begin{array}{c} 0.6109\\ 6.142\\ 7.2\\ 1.8\\ 0.6072\\ 6.080\\ 8.3\\ 1.8\\ 0.6142\\ 6.195\\ 6.4\\ 1.8\\ 0.5903\\ 5.799\\ 15.9\\ 2.5\\ 0.5903\\ 5.761\\ 17.3\\ 2.8\end{array}$	$\begin{array}{c} 0.6099\\ 6.126\\ 7.5\\ 1.8\\ 0.6056\\ 6.053\\ 8.9\\ 1.8\\ 0.6136\\ 6.5\\ 1.8\\ 0.5881\\ 5.762\\ 17.3\\ 2.5\\ 0.5881\\ 5.762\\ 17.3\\ 2.5\\ 0.5862\\ 5.731\\ 18.6\\ 2.7\end{array}$	$\begin{array}{c} 0.6090\\ 6.110\\ 7.8\\ 1.8\\ 0.6043\\ 6.032\\ 9.3\\ 1.8\\ 0.6129\\ 6.175\\ 6.7\\ 1.8\\ 0.5855\\ 5.719\\ 19.1\\ 2.5\\ 0.5845\\ 5.703\\ 19.8\\ 9.8\\ 9.8\\ 2.7\end{array}$	$\begin{array}{c} 0.6083\\ 6.099\\ 8.0\\ 1.8\\ 0.6032\\ 6.013\\ 9.7\\ 1.8\\ 0.6128\\ 6.173\\ 6.7\\ 1.8\\ 0.5850\\ 5.711\\ 19.5\\ 2.4\\ 0.5834\\ \end{array}$	$\begin{array}{c} 0.6078\\ 6.091\\ 8.1\\ 1.8\\ 0.6028\\ 6.006\\ 9.9\\ 1.8\\ 0.6122\\ 6.163\\ 6.9\\ 1.8\\ 0.5840\\ 5.694\\ 20.2\\ 2.4\\ 0.5825\end{array}$	$\begin{array}{c} 0.6072\\ 6.081\\ 8.3\\ 1.9\\ 0.6020\\ 5.994\\ 10.1\\ 1.8\\ 0.6115\\ 6.152\\ 7.0\\ 1.8\\ 0.5829\\ 5.676\\ 21.1\\ 2.4\\ 0.5815 \end{array}$

Mean value of $k_2 = 1.80 \times 10^{-7}$.

activation effect, but with a displacement of the acid-base equilibria. Ionic reactions, such as (a) $SO_4'' + H' \rightleftharpoons HSO_4'$, (b) Ba'' + OH' \rightleftharpoons Ba(OH)', which tend to diminish the hydrogen-(or hydroxyl-) ion concentration, lead to an alteration of the ratio [acid]/[salt]. In such circumstances it is no longer correct to assume, as is done in computing both K and k, that this ratio is independent of salt concentration.

Conclusions.

(1) The buffer unit of Van Slyke, viz., $\beta = dB/dp_{\rm H}$, is not in itself a true criterion of buffer efficiency. It is suggested that this value should be supplemented by the unit $\pi = dp_{\rm H}/d\sqrt{\mu}$ expressing the dilution and neutral-salt errors.

TABLE VIII.Pyrophosphoric acid mixture (i).

$[\mathbf{H}_{\mathbf{s}}\mathbf{A}''] = [\mathbf{H}\mathbf{A}'''] = 0.02.$										
Salt.	А.	В.	C.c. added µ	0·0 0·2400	0∙3 0∙2625	$0.5 \\ 0.2762$	1∙0 0•3093	$1.5 \\ 0.3392$	2∙0 0•3665	3∙0 0∙4156
N-KCl	2.5	1.29	E.M.F. $p_{\rm H}$ $K_3 \times 10^7$ $k_3 \times 10^7$	0.5922 5.797 16.0 1.9	0·5886 5·737 18·3 2·1	0·5876 5·720 19·1 2·1	0·5859 5·693 20·3 2·1	0·5845 5·669 21·4 2·1	0.5832 5.646 22.6 2.1	0.5813 5.615 24.3 2.0
N-NaCl	2.5	0-983	E.M.F. $p_{\rm H}$ $K_3 \times 10^7$ $k_3 \times 10^7$	0·5922 5·797 16·0 1·6	0·5838 5·657 22·0 2·1	0·5872 5·714 19·3 1·8	0·5846 5·670 21·4 1·8	$0.5826 \\ 5.637 \\ 23.1 \\ 1.7$	0.5806 5.664 24.9 1.7	0.5776 5.554 27.9 1.7
M/3-K ₂ SO ₄	2.2	1.48	E.M.F. $p_{\rm H}$ $K_3 \times 10^7$ $k_3 \times 10^7$	0.5922 5.797 16.0 2.2	0.5911 5.779 16.6 2.1	0.5901 5.762 17.3 2.2	0.5888 5.740 18.2 2.1	0.5878 5.724 18.9 2.1	0.5868 5.707 19.6 2.1	0·5853 5·683 20·8 2·1
M/4-MgSO ₄			Е.М.F. Ри	0·5922 5·797	0.5755 5.518	0·5644 5·333	0∙5398 4∙925	0.5250 4.679	0·5159 4·528	0·5062 4·366
			C.c. added µ	4∙0 0∙4573	5∙0 0•4936	6∙0 0∙5250	7∙0 0∙5527	8∙0 0•5777	9∙0 0•6003	10·9 0·6200
<i>N</i> -KCl	2.5	1.29	$E.M.F. p_{\rm H} \ K_3 \times 10^7 \ k_8 \times 10^7$	0.5798 5.590 25.7 2.0	0.5788 5.573 26.7 2.0	$0.5777 \\ 5.555 \\ 27.9 \\ 2.0$	$0.5769 \\ 5.543 \\ 28.6 \\ 2.0$	0·5763 5·530 29·5 2·1	$0.5758 \\ 5.524 \\ 29.9 \\ 2.1$	0·5753 5·516 30·5 2·1
N-NaCl	2.5	0.983	$E.M.F. p_{\rm H} \ K_3 imes 10^7 \ k_3 imes 10^7$	0.5755 5.518 30.3 1.7	0.5737 5.489 32.4 1.7	0.5718 5.458 34.8 1.8	0.5703 5.433 36.9 1.8	0·5693 5·417 38·3 1·8	0·5683 5·399 39·9 1·8	0·5676 5·388 40·9 1·8
M/3-K ₂ SO ₄	2.5	1.48	$E.M.F. p_{\pi} K_{3} \times 10^{7} k_{3} \times 10^{7}$	$0.5843 \\ 5.666 \\ 21.6 \\ 2.1$	$0.5838 \\ 5.657 \\ 22.0 \\ 2.1$	0.5830 5.644 22.7 2.1	$0.5825 \\ 5.635 \\ 23.2 \\ 2.1$	0.5818 5.623 23.8 2.1	0·5816 5·620 24·0 2·1	0.5807 5.606 24.8 2.2
<i>M</i> /4-Mg8O₄			<i>Е.М.F.</i> Рн Меа	0-5004 4-270 n value c	$0.4968 \\ 4.210$	0.4941 4.165 98 × 10	0·4921 4·132	0·4903 4·102	0•4888 4•078	$0.4878 \\ 4.061$

Mean value of $k_3 = 1.98 \times 10^{-7}$.

TABLE IX.

Pyrophosphoric acid mixture (ii).

				[HA‴] ≈	= [A''''] =	= 0.02.				
Salt.	A.	В.	C.c. added μ	0·0 0·3400	0•3 0•3598	0∙5 0•3715	1.0 0.4003	$1.5 \\ 0.4262$	2·0 0·4498	3∙0 0∙4926
N-KC1	3.497	1.33	E.M.F. $p_{\rm H}$ $K_4 \times 10^{10}$ $k_4 \times 10^{10}$	0.7410 8.307 49.3 1.3	0-7380 8-256 55-5 1-3	0•7369 8•237 57•9 1•3	0.7335 8.181 65.9 1.4	0.7318 8.153 70.3 1.3	0·7292 8·108 78·0 1·4	0.7260 8.056 87.9 1.4
N-NaCl	3.22	0.687	$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K_4 \times 10^{10}\\ k_4 \times 10^{10} \end{array}$	0.7410 8.307 49.3 1.1	0.7376 8.249 56.4 1.2	0.7358 8.219 60.4 1.2	0.7303 8.127 74.6 1.3	0.7265 8.063 86.5 1.3	0.7237 8.017 96.2 1.4	0·7190 7·939 115·1 1·4
M/3-K2504	3-69	1.74	$\begin{array}{c} E.M.F. \\ p_{\rm H} \\ K_4 \times 10^{10} \\ k_4 \times 10^{10} \end{array}$	0·7410 8·307 49·3 1·4	0·7392 8·275 53·1 1·4	0·7384 8·262 54·7 1·4	0·7365 8·230 58·9 1·3	0·7349 8·204 62·5 1·3	0.7337 8.185 65.3 1.3	0.7320 8.156 69.8 1.3
			C.c. added μ	4∙0 0∙5288	5.0 0.5604	6∙0 0∙5875	7∙0 0•6115	8·0 0·6332	9∙0 0•6531	10-0 0-6700
N-KCl	3.497	1.33	E.M.F. $p_{\rm ff}$ $K_4 \times 10^{10}$ $k_4 \times 10^{10}$	0·7239 8·021 95·3 1·4	0·7222 7·991 102 1·4	0.7207 7.968 108 1.3	0-7195 7-947 113 1-3	$0.7185 \\ 7.930 \\ 118 \\ 1.3$	$0.7178 \\ 7.920 \\ 120 \\ 1.3$	0•7170 7·907 124 1·3
N-NaCl	3.22	0.687	$\begin{array}{c} E.M.F.\\ p_{\rm H}\\ K_4 \times 10^{10}\\ k_4 \times 10^{10} \end{array}$	$0.7152 \\ 7.877 \\ 133 \\ 1.4$	$0.7125 \\ 7.830 \\ 148 \\ 1.4$	0·7102 7·793 161 1·4	0.7084 7.764 172 1.4	0·7067 7·736 184 1·4	0·7052 7·711 195 1·4	$0.7041 \\ 7.691 \\ 204 \\ 1.3$
M/3 K2SO4	3.69	1.74	E.M.F. $p_{\rm H}$ $K_4 \times 10^{10}$ $k_4 \times 10^{10}$	0.7308 8.136 73.1 1.3	0.7289 8.104 78.7 1.3	0.7282 8.091 81.1 1.3	0.7273 8.076 84.0 1.3	0.7268 8.069 85.3 1.2	0·7263 8·060 87·1 1·2	0·7257 8·050 89·1 1·2

Mean value of $k_4 = 1.32 \times 10^{-10}$.

(2) The limiting dilution error is independent of the strength and specific nature of the buffer electrolyte, depending only on the valency type.

(3) The limiting dilution error of a monobasic buffer mixture is $\pi = -0.5$; that of an *n*-valent mixture is approximately (2n - 1) times as great.

(4) The neutral-salt error is described by the Debye-Hückel equation in the form $p_k = p_K + A\sqrt{\mu} - B\mu$. The value of A for an *n*-valent buffer mixture is approximately (n - 0.5). The value of B depends on the specific nature of the salt, and on the strength and valency of the buffer electrolyte.

(5) The "thermodynamic dissociation constants" of aspartic (k_{A_1}) , acetic, cacodylic, o-phthalic (k_2) , α -glycerylphosphoric (k_2) , and pyrophosphoric (k_3, k_4) acids, and of arginine (k_{B_1}) have been determined.

The author wishes to express his indebtedness to the Principal and Head of the Chemical Department for the provision of facilities, and to Dr. J. C. Crocker for the kind interest he has taken in the work. A grant from the Dixon Fund of the University of London is gratefully acknowledged.

CHELSEA POLYTECHNIC.

[Received, April 13th, 1928.]